Orbitofacial morphology changes with different suture synostoses in Crouzon syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
CHURCHILL LIVINGSTONE
Autores
LU, Xiaona
FORTE, Antonio Jorge
JUNN, Alexandra
DINIS, Jacob
ALPEROVICH, Michael
PERSING, John A.
Citação
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, v.50, n.5, p.406-418, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aims to investigate the influence of different cranial vault suture synostoses on orbital and periorbital morphological development in Crouzon syndrome. Computed tomography (CT) scans of Crouzon syndrome patients who had not undergone operation were subgrouped as follows: type I: bicoronal synostosis; type II: sagittal synostosis; type III: pansynostosis; type IV: perpendicular combinations of suture synostoses; and type V: bilateral squamosal synostosis. CT scans were measured using Materialise software. CT scans of 80 Crouzon syndrome patients and 72 normal controls were included. Orbital bony cavity volume was reduced in all subgroups (16-24%), including type V bilateral squamosal synostosis (16%, p = 0.003), although the reduction in type II sagittal synostosis Crouzon patients failed to reach statistical significance (p = 0.071). Globe volume was reduced only in type I bicoronal synostosis (9%, p = 0.018), while the retrobulbar soft tissue volume decreased in type III pansynostosis group by 11% (p = 0.005). Globe volume projection beyond the orbital rim was increased in all groups (p < 0.001), with the greatest increase in type IV perpendicular combination of sutures synostoses, by 100% (p < 0.001). The anteroposterior length of maxilla was significantly shortened in type I (10%, p = 0.028) and type III (9%, p = 0.022) but developed normally in other groups, although the maxilla was posteriorly displaced in all groups (all p <= 0.026). The influence of squamosal synostosis on craniofacial malformation is not equivalent to that of a major vault suture. Therefore, subtype suture fusion individualized surgical interventions, after initial occipital expansion, likely provide additional benefits in mitigating oculo-orbital disproportion.
Palavras-chave
Crouzon syndrome, Orbit, Globe, Squamosal suture, Pansynostosis
Referências
  1. Azoury SC, 2017, INT J BIOL SCI, V13, P1479, DOI 10.7150/ijbs.22373
  2. Bartels MC, 2004, J CRANIOFAC SURG, V15, P1019, DOI 10.1097/00001665-200411000-00026
  3. Bender CA, 2013, J CRANIO MAXILL SURG, V41, pE146, DOI 10.1016/j.jcms.2012.12.002
  4. BURDI AR, 1986, CLEFT PALATE J, V23, P28
  5. Calandrelli R, 2014, NEURORADIOLOGY, V56, P865, DOI 10.1007/s00234-014-1392-5
  6. Carinci F, 2005, J CRANIOFAC SURG, V16, P361, DOI 10.1097/01.SCS.0000157078.53871.11
  7. CARR M, 1992, CLEFT PALATE-CRAN J, V29, P129, DOI 10.1597/1545-1569(1992)029<0129:COZMFS>2.3.CO;2
  8. Fearon JA, 2017, PLAST RECONSTR SURG, V140, p446E, DOI 10.1097/PRS.0000000000003603
  9. Festa F, 2012, J CRANIOFAC SURG, V23, P789, DOI 10.1097/SCS.0b013e31824dbeec
  10. Forte AJ, 2015, PLAST RECONSTR SURG, V136, P1054, DOI 10.1097/PRS.0000000000001693
  11. Heutinck P, 2021, J CRANIO MAXILL SURG, V49, P449, DOI 10.1016/j.jcms.2021.02.020
  12. Hoefkens MF, 2004, J CRANIOFAC SURG, V15, P233, DOI 10.1097/00001665-200403000-00013
  13. Klausing A, 2019, J CRANIO MAXILL SURG, V47, P1441, DOI 10.1016/j.jcms.2019.07.001
  14. Kreiborg S, 2010, J CRANIOFAC SURG, V21, P1354, DOI 10.1097/SCS.0b013e3181ef2b53
  15. LOSKEN HW, 1989, S AFR MED J, V75, P320
  16. LOSKEN HW, 1989, S AFR MED J, V75, P274
  17. Lu XN, 2021, J CRANIOFAC SURG, V32, P581, DOI 10.1097/SCS.0000000000007203
  18. Lu XN, 2020, J CRANIOFAC SURG, V31, P678, DOI 10.1097/SCS.0000000000006173
  19. Lu XN, 2020, J CRANIOFAC SURG, V31, P673, DOI 10.1097/SCS.0000000000006181
  20. Lu XN, 2019, J CRANIOFAC SURG, V30, P2345, DOI 10.1097/SCS.0000000000005785
  21. Lu XN, 2019, PLAST RECONSTR SURG, V143, p1233E, DOI 10.1097/PRS.0000000000005643
  22. Lu XN, 2019, PRS-GLOB OPEN, V7, DOI 10.1097/GOX.0000000000002158
  23. Lu XN, 2019, J CRANIOFAC SURG, V30, P1671, DOI 10.1097/SCS.0000000000005396
  24. Masters M, 2015, J ANAT, V227, P460, DOI 10.1111/joa.12364
  25. Masters MP, 2012, MED HYPOTHESES, V78, P649, DOI 10.1016/j.mehy.2012.02.002
  26. Narayan D, 1998, J CRANIOFAC SURG, V9, P481, DOI 10.1097/00001665-199809000-00020
  27. Nie XG, 2005, ACTA ODONTOL SCAND, V63, P127, DOI 10.1080/00016350510019847
  28. O'Connor EJF, 2009, PLAST RECONSTR SURG, V123, P1570, DOI 10.1097/PRS.0b013e3181a07625
  29. ORTIZMONASTERIO F, 1978, PLAST RECONSTR SURG, V61, P507
  30. Pearce E, 2013, ANN HUM BIOL, V40, P531, DOI 10.3109/03014460.2013.815272
  31. Prevost R, 2019, J CRANIO MAXILL SURG, V47, P556, DOI 10.1016/j.jcms.2019.01.028
  32. Rogers GF, 2015, CLEFT PALATE-CRAN J, V52, P751, DOI 10.1597/14-092
  33. ROSEN HM, 1984, J MAXILLOFAC SURG, V12, P56, DOI 10.1016/S0301-0503(84)80212-X
  34. Rosenberg P, 1997, PLAST RECONSTR SURG, V99, P1396, DOI 10.1097/00006534-199704001-00030
  35. Runyan CM, 2017, PLAST RECONSTR SURG, V140, p434E, DOI 10.1097/PRS.0000000000003586
  36. Scafati CT, 2008, ANN PLAS SURG, V61, P285, DOI 10.1097/SAP.0b013e31815cbb3e
  37. Sharma VP, 2012, CLEFT PALATE-CRAN J, V49, P373, DOI 10.1597/11-185
  38. Spruijt B, 2016, PLAST RECONSTR SURG, V137, p112E, DOI 10.1097/PRS.0000000000001894
  39. ter Maaten NS, 2018, J CRANIOFAC SURG, V29, P1169, DOI 10.1097/SCS.0000000000004473
  40. TESSIER P, 1971, PLAST RECONSTR SURG, V48, P419, DOI 10.1097/00006534-197111000-00002
  41. Way BLM, 2019, PLAST RECONSTR SURG, V143, p121E, DOI 10.1097/PRS.0000000000005105
  42. White N, 2009, CHILD NERV SYST, V25, P231, DOI 10.1007/s00381-008-0758-6