Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorAGUIAR, Ricardo Pinto
dc.contributor.authorFALCAO, Edgar Teixeira
dc.contributor.authorPASQUALUCCI, Carlos Augusto
dc.contributor.authorSILVEIRA JR., Landulfo
dc.date.accessioned2022-02-24T17:19:10Z
dc.date.available2022-02-24T17:19:10Z
dc.date.issued2022
dc.description.abstractRaman spectroscopy was used to identify biochemical differences in normal brain tissue (cerebellum and meninges) compared to tumors (glioblastoma, medulloblastoma, schwannoma, and meningioma) through biochemical information obtained from the samples. A total of 263 spectra were obtained from fragments of the normal cerebellum (65), normal meninges (69), glioblastoma (28), schwannoma (8), medulloblastoma (19), and meningioma (74), which were collected using the dispersive Raman spectrometer (830 nm, near infrared, output power of 350 mW, 20 s exposure time to obtain the spectra), coupled to a Raman probe. A spectral model based on least squares fitting was developed to estimate the biochemical concentration of 16 biochemical compounds present in brain tissue, among those that most characterized brain tissue spectra, such as linolenic acid, triolein, cholesterol, sphingomyelin, phosphatidylcholine, beta-carotene, collagen, phenylalanine, DNA, glucose, and blood. From the biochemical information, the classification of the spectra in the normal and tumor groups was conducted according to the type of brain tumor and corresponding normal tissue. The classification used in discrimination models were (a) the concentrations of the biochemical constituents of the brain, through linear discriminant analysis (LDA), and (b) the tissue spectra, through the discrimination by partial least squares (PLS-DA) regression. The models obtained 93.3% discrimination accuracy through the LDA between the normal and tumor groups of the cerebellum separated according to the concentration of biochemical constituents and 94.1% in the discrimination by PLS-DA using the whole spectrum. The results obtained demonstrated that the Raman technique is a promising tool to differentiate concentrations of biochemical compounds present in brain tissues, both normal and tumor. The concentrations estimated by the biochemical model and all the information contained in the Raman spectra were both able to classify the pathological groups.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipFAPESP (Sao Paulo Research Foundation, Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2009/01788-5]
dc.identifier.citationLASERS IN MEDICAL SCIENCE, v.37, n.1, p.121-133, 2022
dc.identifier.doi10.1007/s10103-020-03173-1
dc.identifier.eissn1435-604X
dc.identifier.issn0268-8921
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/44563
dc.language.isoeng
dc.publisherSPRINGER LONDON LTDeng
dc.relation.ispartofLasers in Medical Science
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright SPRINGER LONDON LTDeng
dc.subjectBrain tumorseng
dc.subjectDiagnosiseng
dc.subjectRaman spectroscopyeng
dc.subjectBiochemical analysiseng
dc.subject.otherbreast-cancereng
dc.subject.otherin-vivoeng
dc.subject.otherdiscriminationeng
dc.subject.othergliomaseng
dc.subject.wosEngineering, Biomedicaleng
dc.subject.wosSurgeryeng
dc.titleUse of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosiseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalAGUIAR, Ricardo Pinto:Univ Anhembi Morumbi UAM, Ctr Innovat Technol & Educ CITE, Parque Tecnol Sao Jose Campos, BR-12247106 Sao Jose Dos Campos, SP, Brazil
hcfmusp.author.externalFALCAO, Edgar Teixeira:Hosp Sao Jose, Santa Casa Misericordia Ilheus, Ladeira Vitoria 113, BR-45653420 Ilheus, BA, Brazil
hcfmusp.author.externalSILVEIRA JR., Landulfo:Univ Anhembi Morumbi UAM, Ctr Innovat Technol & Educ CITE, Parque Tecnol Sao Jose Campos, BR-12247106 Sao Jose Dos Campos, SP, Brazil
hcfmusp.citation.scopus11
hcfmusp.contributor.author-fmusphcCARLOS AUGUSTO GONCALVES PASQUALUCCI
hcfmusp.description.beginpage121
hcfmusp.description.endpage133
hcfmusp.description.issue1
hcfmusp.description.volume37
hcfmusp.origemWOS
hcfmusp.origem.pubmed33159308
hcfmusp.origem.scopus2-s2.0-85095445870
hcfmusp.origem.wosWOS:000587083600002
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceAguiar RP, 2013, PHOTOMED LASER SURG, V31, P595, DOI 10.1089/pho.2012.3460eng
hcfmusp.relation.reference[Anonymous], 2019, EST 2020 CANC INC BReng
hcfmusp.relation.referenceBeljebbar A, 2008, ANAL CHEM, V80, P8406, DOI 10.1021/ac800990yeng
hcfmusp.relation.referenceBodanese B, 2010, PHOTOMED LASER SURG, V28, pS119, DOI 10.1089/pho.2009.2565eng
hcfmusp.relation.referenceBrennan JF, 1997, CIRCULATION, V96, P99eng
hcfmusp.relation.referenceDakovic M, 2013, TALANTA, V117, P133, DOI 10.1016/j.talanta.2013.08.058eng
hcfmusp.relation.referencede Jong BWD, 2006, ANAL CHEM, V78, P7761, DOI 10.1021/ac061417beng
hcfmusp.relation.referenceDesroches J, 2015, BIOMED OPT EXPRESS, V6, P2380, DOI 10.1364/BOE.6.002380eng
hcfmusp.relation.referenceDreissig I, 2009, SPECTROCHIM ACTA A, V71, P2069, DOI 10.1016/j.saa.2008.08.008eng
hcfmusp.relation.referenceEberhardt K, 2015, EXPERT REV MOL DIAGN, V15, P773, DOI 10.1586/14737159.2015.1036744eng
hcfmusp.relation.referenceFallahzadeh O, 2018, LASER MED SCI, V33, P1799, DOI 10.1007/s10103-018-2544-3eng
hcfmusp.relation.referenceGajjar K, 2013, ANAL METHODS-UK, V5, P89, DOI 10.1039/c2ay25544heng
hcfmusp.relation.referenceHaka AS, 2005, P NATL ACAD SCI USA, V102, P12371, DOI 10.1073/pnas.0501390102eng
hcfmusp.relation.referenceHanlon EB, 2000, PHYS MED BIOL, V45, pR1, DOI 10.1088/0031-9155/45/2/201eng
hcfmusp.relation.referenceHedegaard M, 2010, ANAL CHEM, V82, P2797, DOI 10.1021/ac902717deng
hcfmusp.relation.referenceHollon T, 2016, NEUROSURG FOCUS, V40, DOI 10.3171/2015.12.FOCUS15557eng
hcfmusp.relation.referenceHorsnell JD, 2016, LASER MED SCI, V31, P1143, DOI 10.1007/s10103-016-1959-yeng
hcfmusp.relation.referenceJarmusch AK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163180eng
hcfmusp.relation.referenceJermyn M, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa2384eng
hcfmusp.relation.referenceJi MB, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3005954eng
hcfmusp.relation.referenceKalkanis SN, 2014, J NEURO-ONCOL, V116, P477, DOI 10.1007/s11060-013-1326-9eng
hcfmusp.relation.referenceKoljenovic S, 2005, ANAL CHEM, V77, P7958, DOI 10.1021/ac0512599eng
hcfmusp.relation.referenceKoljenovic S, 2002, LAB INVEST, V82, P1265, DOI 10.1097/01.LAB.0000032545.96931.B8eng
hcfmusp.relation.referenceKrafft C, 2005, SPECTROCHIM ACTA A, V61, P1529, DOI 10.1016/j.saa.2004.11.017eng
hcfmusp.relation.referenceKrafft C, 2006, BIOPOLYMERS, V82, P301, DOI 10.1002/bip.20492eng
hcfmusp.relation.referenceMagee ND, 2009, J PHYS CHEM B, V113, P8137, DOI 10.1021/jp900379weng
hcfmusp.relation.referenceMehta K, 2018, ANALYST, V143, P1916, DOI 10.1039/c8an00224jeng
hcfmusp.relation.referenceMIZUNO A, 1994, J RAMAN SPECTROSC, V25, P25, DOI 10.1002/jrs.1250250105eng
hcfmusp.relation.referenceNunes CA, 2012, J BRAZIL CHEM SOC, V23, P2003, DOI 10.1590/S0103-50532012005000073eng
hcfmusp.relation.referenceNygren C, 1997, BRIT J NEUROSURG, V11, P216, DOI 10.1080/02688699746276eng
hcfmusp.relation.referencePatel AP, 2019, LANCET NEUROL, V18, P376, DOI 10.1016/S1474-4422(18)30468-Xeng
hcfmusp.relation.referenceRabah R, 2008, J PEDIATR SURG, V43, P171, DOI 10.1016/j.jpedsurg.2007.09.040eng
hcfmusp.relation.referenceRIBONI L, 1984, NEUROCHEM PATHOL, V2, P171, DOI 10.1007/BF02834351eng
hcfmusp.relation.referenceRowland PL, 2011, MERRIT TREATED NEUROeng
hcfmusp.relation.referenceSchleusener J, 2015, EXP DERMATOL, V24, P767, DOI 10.1111/exd.12768eng
hcfmusp.relation.referenceSilveira L, 2014, LASER MED SCI, V29, P1469, DOI 10.1007/s10103-014-1550-3eng
hcfmusp.relation.referenceSilveira L, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.7.077003eng
hcfmusp.relation.referenceSimeone P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103030eng
hcfmusp.relation.referenceStone N, 2007, ANAL BIOANAL CHEM, V387, P1657, DOI 10.1007/s00216-006-0937-9eng
hcfmusp.relation.referenceZhou Y, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.11.116021eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication72f17805-b816-4624-98ba-73ed2144f830
relation.isAuthorOfPublication.latestForDiscovery72f17805-b816-4624-98ba-73ed2144f830
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_AGUIAR_Use_of_Raman_spectroscopy_to_evaluate_the_biochemical_2022.PDF
Tamanho:
1.26 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)