Aerobic Exercise Improves Reverse Cholesterol Transport in Cholesteryl Ester Transfer Protein Transgenic Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2011
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Citação
LIPIDS, v.46, n.7, p.617-625, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of (14)C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [(3)H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [(3)H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [(3)H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Palavras-chave
Atherosclerosis, CETP, HDL, Physical exercise, Cholesterol
Referências
  1. Sorli JV, 2006, CLIN CHIM ACTA, V366, P196, DOI 10.1016/j.cca.2005.10.001
  2. Mardones P, 2001, J LIPID RES, V42, P170
  3. Harada LM, 2007, ATHEROSCLEROSIS, V191, P313, DOI 10.1016/j.atherosclerosis.2006.05.036
  4. Tanigawa H, 2007, CIRCULATION, V116, P1267, DOI 10.1161/CIRCULATIONAHA.107.704254
  5. Mukherjee M, 2004, CLIN GENET, V65, P412, DOI 10.1111/j.1399-0004.2004.00237.x
  6. FOLCH J, 1957, J BIOL CHEM, V226, P497
  7. Temel RE, 2010, CELL METAB, V12, P96, DOI 10.1016/j.cmet.2010.05.011
  8. Ramachandran S, 2005, ATHEROSCLEROSIS, V178, P33, DOI 10.1016/j.atherosclerosis.2004.08.010
  9. Tchoua U, 2008, CARDIOVASC RES, V77, P732, DOI 10.1093/cvr/cvm087
  10. Zhou HW, 2006, BBA-MOL CELL BIOL L, V1761, P1482, DOI 10.1016/j.bbalip.2006.09.008
  11. Napoli C, 2006, P NATL ACAD SCI USA, V103, P10479, DOI 10.1073/pnas.0602774103
  12. Wellington CL, 2003, J LIPID RES, V44, P1470, DOI 10.1194/jlr.M300110-JLR200
  13. Wang X, 2007, J CLIN INVEST, V117, P2216, DOI 10.1172/JC32057
  14. Butcher LR, 2008, MED SCI SPORT EXER, V40, P1263, DOI 10.1249/MSS.0b013e31816c091d
  15. Meilhac O, 2001, ARTERIOSCL THROM VAS, V21, P1681, DOI 10.1161/hq1001.097106
  16. Wilund KR, 2008, J APPL PHYSIOL, V104, P761, DOI 10.1152/japplphysiol.01292.2007
  17. Basso F, 2003, J LIPID RES, V44, P296, DOI 10.1194/jlr.M200414-JLR200
  18. Zhang YZ, 2003, CIRCULATION, V108, P661, DOI 10.1161/01.CIR.0000086981.09834.E0
  19. Kozarsky KF, 2000, ARTERIOSCL THROM VAS, V20, P721
  20. Zhang YZ, 2005, J CLIN INVEST, V115, P2870, DOI 10.1172/JCI25327
  21. Timmins JM, 2005, J CLIN INVEST, V115, P1333, DOI 10.1172/JCI200523915
  22. Couillard C, 2001, ARTERIOSCL THROM VAS, V21, P1226, DOI 10.1161/hq0701.092137
  23. Okabe T, 2007, CARDIOVASC RES, V74, P537, DOI 10.1016/j.cardiores.2007.02.019
  24. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  25. Ghanbari-Niaki A, 2007, BIOCHEM BIOPH RES CO, V361, P841, DOI 10.1016/j.bbrc.2007.07.100
  26. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  27. Yasuda T, 2010, ARTERIOSCL THROM VAS, V30, P781, DOI 10.1161/ATVBAHA.109.195693
  28. Meissner M, 2010, MED SCI SPORT EXER, V42, P1460, DOI 10.1249/MSS.0b013e3181cfcb02
  29. Calpe-Berdiel L, 2005, BBA-MOL CELL BIOL L, V1738, P6, DOI 10.1016/j.bbalip.2005.11.012
  30. Escola-Gil JC, 2001, J LIPID RES, V42, P241
  31. Gauthier A, 2005, ARTERIOSCL THROM VAS, V25, P2177, DOI 10.1161/01.ATV.0000183613.13929.13
  32. GUPTA AK, 1993, METABOLISM, V42, P684, DOI 10.1016/0026-0495(93)90233-E
  33. Harder C, 2007, ARTERIOSCL THROM VAS, V27, P858, DOI 10.1161/01.ATV.0000259357.42089.dc
  34. LEE IM, 1995, JAMA-J AM MED ASSOC, V273, P1179, DOI 10.1001/jama.273.15.1179
  35. MATSUMOTO Y, 2010, CIRCULATION, V21, P759
  36. MEISSNER M, 2010, NUTR METAB, V1, P54
  37. Nordstrom CK, 2003, AM J MED, V115, P19, DOI 10.1016/S0002-9343(03)00242-0
  38. Olchawa B, 2004, ARTERIOSCL THROM VAS, V24, P1087, DOI 10.1161/01.ATV.0000128124.72935.0f
  39. Rotllan N, 2008, ATHEROSCLEROSIS, V196, P505, DOI 10.1016/j.atheroscterosis.2007.05.007
  40. Sehayek E, 2008, ARTERIOSCL THROM VAS, V28, P1296, DOI 10.1161/ATVBAHA.108.165803
  41. Singaraja RR, 2006, ARTERIOSCL THROM VAS, V26, P1821, DOI 10.1161/01.ATV.0000229219.13757.a2
  42. Vassiliou G, 2004, J LIPID RES, V45, P1683, DOI 10.1194/jlr.M400051-JLR200
  43. Wang X, 2007, CURR OPIN CARDIOL, V22, P368, DOI 10.1097/HCO.0b013e3281ec5113
  44. Wei C, 2005, BBA-GEN SUBJECTS, V1723, P124, DOI 10.1016/j.bbagen.2005.03.005