Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of human lung cancer cells in vitro and in vivo

Nenhuma Miniatura disponível
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
XANDE, Juliana G.
DIAS, Ana P.
CRUZ, Mario C.
BRITO, Barbara
FERREIRA, Robledo A.
COSTANZI-STRAUSS, Eugenia
Citação
GENE THERAPY, v.27, p.51-61, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cancer therapies that target a single protein or pathway may be limited by their specificity, thus missing key players that control cellular proliferation and contributing to the failure of the treatment. We propose that approaches to cancer therapy that hit multiple targets would limit the chances of escape. To this end, we have developed a bicistronic adenoviral vector encoding both the CDKN2A and p53 tumor suppressor genes. The bicistronic vector, AdCDKN2A-I-p53, supports the translation of both gene products from a single transcript, assuring that all transduced cells will express both proteins. We show that combined, but not single, gene transfer results in markedly reduced proliferation and increased cell death correlated with reduced levels of phosphorylated pRB, induction of CDKN1A and caspase 3 activity, yet avoiding the induction of senescence. Using isogenic cell lines, we show that these effects were not impeded by the presence of mutant p53. In a mouse model of in situ gene therapy, a single intratumoral treatment with the bicistronic vector conferred markedly inhibited tumor progression while the treatment with either CDKN2A or p53 alone only partially controlled tumor growth. Histologic analysis revealed widespread transduction, yet reduced proliferation and increased cell death was associated only with the simultaneous transfer of CDKN2A and p53. We propose that restoration of two of the most frequently altered genes in human cancer, mediated by AdCDKN2A-I-p53, is beneficial since multiple targets are reached, thus increasing the efficacy of the treatment.
Palavras-chave
Referências
  1. Ablain J, 2016, CSH PERSPECT MED, V6, DOI 10.1101/cshperspect.a026260
  2. Bajgelman MC, 2003, J BIOTECHNOL, V103, P97, DOI 10.1016/S0168-1656(03)00103-2
  3. Beckerman R, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000935
  4. Carr TH, 2016, NAT REV CANCER, V16, P319, DOI 10.1038/nrc.2016.35
  5. Chen GX, 2014, ONCOTARGETS THER, V7, P1901, DOI 10.2147/OTT.S50483
  6. Chen J., 2016, BIO PROTOC, V6, pe2079
  7. Colombo F, 2005, CANCER GENE THER, V12, P835, DOI 10.1038/sj.cgt.7700851
  8. Costanzi-Strauss E, 1998, EXP CELL RES, V238, P51, DOI 10.1006/excr.1997.3810
  9. Debacq-Chainiaux F, 2009, NAT PROTOC, V4, P1798, DOI 10.1038/nprot.2009.191
  10. Deben C, 2016, CRIT REV ONCOL HEMAT, V99, P63, DOI 10.1016/j.critrevonc.2015.11.019
  11. Freed-Pastor WA, 2012, GENE DEV, V26, P1268, DOI 10.1101/gad.190678.112
  12. Freytag SO, 2003, CANCER RES, V63, P7497
  13. Friedman AA, 2015, NAT REV CANCER, V15, P747, DOI 10.1038/nrc4015
  14. Futreal PA, 2004, NAT REV CANCER, V4, P177, DOI 10.1038/nrc1299
  15. Ghaneh P, 2001, GENE THER, V8, P199, DOI 10.1038/sj.gt.3301394
  16. GHATTAS IR, 1991, MOL CELL BIOL, V11, P5848, DOI 10.1128/MCB.11.12.5848
  17. Haupt S, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00012
  18. Helsten T, 2016, MOL CANCER THER, V15, P1682, DOI 10.1158/1535-7163.MCT-16-0071
  19. Hoe KK, 2014, NAT REV DRUG DISCOV, V13, P217, DOI 10.1038/nrd4236
  20. Jamal-Hanjani M, 2017, NEW ENGL J MED, V376, P2109, DOI 10.1056/NEJMoa1616288
  21. Kaye FJ, 2002, ONCOGENE, V21, P6908, DOI 10.1038/sj.onc.1205834
  22. Kim JH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018556
  23. Lane DP, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a001222
  24. Lu X, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000984
  25. Meek DW, 2009, CSH PERSPECT BIOL, V1, DOI 10.1101/cshperspect.a000950
  26. Melero I, 2015, NAT REV CANCER, V15, P457, DOI 10.1038/nrc3973
  27. Merkel CA, 2010, BMC CANCER, V10, DOI 10.1186/1471-2407-10-316
  28. Miciak J, 2016, BBA-REV CANCER, V1865, P220, DOI 10.1016/j.bbcan.2016.03.001
  29. Muller PAJ, 2014, CANCER CELL, V25, P304, DOI 10.1016/j.ccr.2014.01.021
  30. Naviaux RK, 1996, J VIROL, V70, P5701, DOI 10.1128/JVI.70.8.5701-5705.1996
  31. Nguyen DM, 1996, J THORAC CARDIOV SUR, V112, P1372, DOI 10.1016/S0022-5223(96)70154-X
  32. NybergHoffman C, 1997, NAT MED, V3, P808, DOI 10.1038/nm0797-808
  33. Okada H, 2000, HUM GENE THER, V11, P637
  34. Oren M, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a001107
  35. Robles AI, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a001016
  36. Roth JA, 2006, EXPERT OPIN BIOL TH, V6, P55, DOI 10.1517/14712598.6.1.55
  37. Rozen S, 2000, Methods Mol Biol, V132, P365
  38. Sandig V, 1997, NAT MED, V3, P313, DOI 10.1038/nm0397-313
  39. Sherr CJ, 2016, CANCER DISCOV, V6, P353, DOI 10.1158/2159-8290.CD-15-0894
  40. STRAUSS BE, 1995, BIOCHEM BIOPH RES CO, V217, P333, DOI 10.1006/bbrc.1995.2781
  41. Strauss Bryan E, 2002, Cancer Cell Int, V2, P2, DOI 10.1186/1475-2867-2-2
  42. Szymczak-Workman Andrea L, 2012, Cold Spring Harb Protoc, V2012, P199, DOI 10.1101/pdb.ip067876
  43. TOMAYKO MM, 1989, CANCER CHEMOTH PHARM, V24, P148, DOI 10.1007/BF00300234
  44. VanderVeen N, 2016, HUM GENE THER METHOD, V27, P98, DOI 10.1089/hgtb.2015.168
  45. Vanneman M, 2012, NAT REV CANCER, V12, P237, DOI 10.1038/nrc3237
  46. Wang XY, 2015, CANCER RES, V75, P5001, DOI 10.1158/0008-5472.CAN-15-0563