Intralimb Coordination Patterns in Absent, Mild, and Severe Stages of Diabetic Neuropathy: Looking Beyond Kinematic Analysis of Gait Cycle

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
YI, Liu Chiao
SOUZA, Francis Trombini
Citação
PLOS ONE, v.11, n.1, article ID e0147300, 13p, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim Diabetes Mellitus progressively leads to impairments in stability and joint motion and might affect coordination patterns, mainly due to neuropathy. This study aims to describe changes in intralimb joint coordination in healthy individuals and patients with absent, mild and, severe stages of neuropathy. Methods Forty-seven diabetic patients were classified into three groups of neuropathic severity by a fuzzy model: 18 without neuropathy (DIAB), 7 with mild neuropathy (MILD), and 22 with moderate to severe neuropathy (SVRE). Thirteen healthy subjects were included as controls (CTRL). Continuous relative phase (CRP) was calculated at each instant of the gait cycle for each pair of lower limb joints. Analysis of Variance compared each frame of the CRP time series and its standard deviation among groups (alpha = 5%). Results For the ankle-hip CRP, the SVRE group presented increased variability at the propulsion phase and a distinct pattern at the propulsion and initial swing phases compared to the DIAB and CTRL groups. For the ankle-knee CRP, the 3 diabetic groups presented more anti-phase ratios than the CTRL group at the midstance, propulsion, and terminal swing phases, with decreased variability at the early stance phase. For the knee-hip CRP, the MILD group showed more in-phase ratio at the early stance and terminal swing phases and lower variability compared to all other groups. All diabetic groups were more in-phase at early the midstance phase (with lower variability) than the control group. Conclusion The low variability and coordination differences of the MILD group showed that gait coordination might be altered not only when frank evidence of neuropathy is present, but also when neuropathy is still incipient. The ankle-knee CRP at the initial swing phase showed distinct patterns for groups from all degrees of neuropathic severity and CTRLs. The anklehip CRP pattern distinguished the SVRE patients from other diabetic groups, particularly in the transitional phase from stance to swing.
Palavras-chave
Referências
  1. Daffertshofer A, 2004, CLIN BIOMECH, V19, P415, DOI 10.1016/j.clinbiomech.2004.01.005
  2. Hamill J, 1999, CLIN BIOMECH, V14, P297, DOI 10.1016/S0268-0033(98)90092-4
  3. Perkins BA, 2001, DIABETES CARE, V24, P250, DOI 10.2337/diacare.24.2.250
  4. Wu WH, 2014, HUM MOVEMENT SCI, V33, P194, DOI 10.1016/j.humov.2013.09.002
  5. Gomes AA, 2011, MUSCLE NERVE, V44, P258, DOI 10.1002/mus.22051
  6. Lamb PF, 2014, CLIN BIOMECH, V29, P484, DOI 10.1016/j.clinbiomech.2014.03.008
  7. Haddad JM, 2010, J APPL BIOMECH, V26, P109
  8. Rao ST, 2007, CLIN BIOMECH, V22, P464, DOI 10.1016/j.clinbiomech.2006.11.013
  9. Glasoe WM, 2004, FOOT ANKLE INT, V25, P550
  10. Allet L, 2008, DIABETES-METAB RES, V24, P173, DOI 10.1002/dmrr.809
  11. Rao S, 2010, GAIT POSTURE, V31, P251, DOI 10.1016/j.gaitpost.2009.10.016
  12. Kwon OY, 2003, GAIT POSTURE, V18, P105, DOI 10.1016/S0966-6362(02)00166-2
  13. FERNANDO DJS, 1991, DIABETES CARE, V14, P8, DOI 10.2337/diacare.14.1.8
  14. VEVES A, 1992, DIABETOLOGIA, V35, P660, DOI 10.1007/BF00400259
  15. Deandrea S, 2010, EPIDEMIOLOGY, V21, P658, DOI 10.1097/EDE.0b013e3181e89905
  16. Akashi PMH, 2008, CLIN BIOMECH, V23, P584, DOI 10.1016/j.clinbiomech.2007.11.015
  17. Pham H, 2000, DIABETES CARE, V23, P606, DOI 10.2337/diacare.23.5.606
  18. Childs JD, 2004, CLIN BIOMECH, V19, P44, DOI 10.1016/j.clinbiomech.2003.08.007
  19. Lavery LA, 2002, J AM PODIAT MED ASSN, V92, P479
  20. [Anonymous], 2011, DIAB METAB RES REV, DOI 10.1002/DMRR.2253
  21. Savelberg HHCM, 2010, CLIN BIOMECH, V25, P468, DOI 10.1016/j.clinbiomech.2010.02.005
  22. Sawacha Z, 2012, GAIT POSTURE, V35, P101, DOI 10.1016/j.gaitpost.2011.08.016
  23. Abboud RJ, 2000, CLIN BIOMECH, V15, P37, DOI 10.1016/S0268-0033(99)00038-8
  24. Sacco ICN, 2009, CLIN BIOMECH, V24, P687, DOI 10.1016/j.clinbiomech.2009.05.003
  25. Giacomozzi C, 2002, DIABETES CARE, V25, P1451, DOI 10.2337/diacare.25.8.1451
  26. Williams DSB, 2007, J APPL BIOMECH, V23, P251
  27. Stergiou N, 2011, HUM MOVEMENT SCI, V30, P869, DOI 10.1016/j.humov.2011.06.002
  28. Bennetts CJ, 2013, J BIOMECH, V46, P19, DOI [10.1016/j.jbiomech.2012.09.007, 10.1016/j.jblomech.2012.09.007]
  29. Rao S, 2006, GAIT POSTURE, V24, P295, DOI 10.1016/j.gaitpost.2005.10.004
  30. Ghanavati T, 2014, J BIOMECH, V47, P2300, DOI 10.1016/j.jbiomech.2014.04.038
  31. Giacomozzi C, 2005, CLIN BIOMECH, V20, P532, DOI 10.1016/j.clinbiomech.2005.01.011
  32. Armstrong DG, 1998, J BONE JOINT SURG AM, V80A, P365
  33. Lamola G, 2015, J NEUROENG REHABIL, V12, DOI 10.1186/s12984-015-0093-6
  34. Brown SJ, 2014, J BIOMECH, V47, P3639, DOI 10.1016/j.jbiomech.2014.10.005
  35. Campbell K, 1987, ASME INT COMP ENG C
  36. Cavanagh PR, 1991, BIOMECHANICS DIABETI
  37. Fernando M, 2013, CLIN BIOMECH BRISTOL
  38. Fernando ME, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099050
  39. Guiotto A, 2014, J BIOMECH, V47, P3064, DOI 10.1016/j.jbiomech.2014.06.029
  40. Powers Christopher M, 2012, J Orthop Sports Phys Ther, V42, pA1, DOI 10.2519/jospt.2012.0301
  41. Esposito ER, 2014, GAIT POSTURE, V40, P640, DOI 10.1016/j.gaitpost.2014.07.019
  42. Sacco IC, 2015, DIABETES TECHNOL THE
  43. Sacco ICN, 2010, BMC MUSCULOSKEL DIS, V11, DOI 10.1186/1471-2474-11-24
  44. Stergiou Nicholas, 2006, J Neurol Phys Ther, V30, P120
  45. Swinnen Stephan P, 2002, Nat Rev Neurosci, V3, P348, DOI 10.1038/nrn807
  46. van Schie C H M, 2005, Int J Low Extrem Wounds, V4, P160, DOI 10.1177/1534734605280587
  47. Watari R, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-11
  48. Yavuzer G, 2006, Eura Medicophys, V42, P127