Effects of intrauterine exposure to concentrated ambient particles on allergic sensitization in juvenile mice

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
TOXICOLOGY, v.463, article ID 152970, 9p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Intrauterine exposure to particulate matter (PM) has been associated with an increased risk of asthma development, which may differ by the age of asthma onset, sex, and pollutant concentration. To investigate the pulmonary effects of in utero exposure to concentrated urban ambient particles (CAPs) in response to house dust mite (HDM) sensitization in juvenile mice. Mice were exposed to CAPs (600 mu g/m(3) PM2.5) during the gestational period. Twenty-two-day postnatal mice were sensitized with HDM (100 mu g, intranasally, 3 times per week). Airway responsiveness (AHR), serum immunoglobulin, and lung inflammation were assessed after 43 days of the postnatal period. Female (n = 47) and male (n = 43) mice were divided into four groups as follows: (1) FA: not exposed to CAPs; (2) CAPs: exposed to CAPs; (3) HDM: sensitized to HDM; and (4) CAPs+HDM: exposed to CAPs and HDM-sensitized. PM2.5 exposure did not worsen lung hyperresponsiveness or allergic inflammation in sensitized animals. The levels of the lung cytokines IL-4, TNF-alpha, and IL-2 were differentially altered in male and female animals. Males presented hyporesponsiveness and increased lung macrophagic inflammation. There were no epigenetic changes in the IL-4 gene. In conclusion, intrauterine exposure ambient PM2.5 did not worsened allergic pulmonary susceptibility but affected the pulmonary immune profile and lung function, which differed by sex.
Palavras-chave
Particulate matter, Toxicity, Asthma, Inflammation, House dust mites
Referências
  1. Abe KC, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13070694
  2. Alves ND, 2020, ENVIRON INT, V145, DOI 10.1016/j.envint.2020.106150
  3. Arantes-Costa FM, 2014, INT IMMUNOPHARMACOL, V22, P9, DOI 10.1016/j.intimp.2014.06.020
  4. Bruggemann TR, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00718
  5. CETESB Companhia Ambiental do Estado de Sao Paulo, 2020, QUAL AR NO EST SAO P
  6. Christensen S, 2017, ENVIRON MOL MUTAGEN, V58, P423, DOI 10.1002/em.22097
  7. de Brito JM, 2014, J APPL PHYSIOL, V117, P492, DOI 10.1152/japplphysiol.00156.2014
  8. DeVries A, 2016, ANN AM THORAC SOC, V13, pS48, DOI 10.1513/AnnalsATS.201507-420MG
  9. Dolinoy DC, 2007, REPROD TOXICOL, V23, P297, DOI 10.1016/j.reprotox.2006.08.012
  10. Fedulov AV, 2008, AM J RESP CELL MOL, V38, P57, DOI 10.1165/rcmb.2007-0124OC
  11. Ferrari L, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0726-x
  12. Ferrini M, 2017, PART FIBRE TOXICOL, V14, DOI 10.1186/s12989-017-0212-6
  13. Fu LL, 2020, ECOTOX ENVIRON SAFE, V188, DOI 10.1016/j.ecoenv.2019.109867
  14. Gruzieva O, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP4522
  15. Hamada K, 2007, J TOXICOL ENV HEAL A, V70, P688, DOI 10.1080/15287390600974692
  16. Jedrychowski WA, 2013, INT J HYG ENVIR HEAL, V216, P395, DOI 10.1016/j.ijheh.2012.12.014
  17. Ji H, 2016, ALLERGY ASTHMA CL IM, V12, DOI 10.1186/s13223-016-0159-4
  18. Larcombe AN, 2011, INFLUENZA OTHER RESP, V5, P334, DOI 10.1111/j.1750-2659.2011.00236.x
  19. Lee A, 2018, J ALLERGY CLIN IMMUN, V141, P1880, DOI 10.1016/j.jaci.2017.07.017
  20. Loffredo LF, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61420-5
  21. Maiellaro M, 2014, TOXICOL APPL PHARM, V278, P266, DOI 10.1016/j.taap.2014.05.003
  22. Manners S, 2014, J ALLERGY CLIN IMMUN, V134, P63, DOI 10.1016/j.jaci.2013.10.047
  23. MARTINEZ FD, 1995, NEW ENGL J MED, V332, P133, DOI 10.1056/NEJM199501193320301
  24. Martino D, 2011, CHEST, V139, P640, DOI 10.1378/chest.10-1800
  25. Mauad T, 2008, AM J RESP CRIT CARE, V178, P721, DOI 10.1164/rccm.200803-436OC
  26. Melgert BN, 2005, CLIN EXP ALLERGY, V35, P1496, DOI 10.1111/j.1365-2222.2005.02362.x
  27. Lopes TDM, 2018, ENVIRON POLLUT, V241, P511, DOI 10.1016/j.envpol.2018.05.055
  28. Robbe P, 2015, AM J PHYSIOL-LUNG C, V308, pL358, DOI 10.1152/ajplung.00341.2014
  29. Rychlik KA, 2019, P NATL ACAD SCI USA, V116, P3443, DOI 10.1073/pnas.1816103116
  30. Saradna A, 2018, TRANSL RES, V191, P1, DOI 10.1016/j.trsl.2017.09.002
  31. Sbihi H, 2016, EUR RESPIR J, V47, P1062, DOI 10.1183/13993003.00746-2015
  32. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  33. Timmerman T, 2019, ENVIRON POLLUT, V253, P667, DOI 10.1016/j.envpol.2019.06.085
  34. Tiotiu AI, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176212
  35. van Rijt LS, 2012, ALLERGY, V67, P1383, DOI 10.1111/all.12017
  36. Vieira RD, 2012, MED SCI SPORT EXER, V44, P1227, DOI 10.1249/MSS.0b013e31824b2877
  37. Vieira RP, 2011, AM J RESP CRIT CARE, V184, P215, DOI 10.1164/rccm.201011-1762OC
  38. Wang BM, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.00038
  39. Wang C, 2020, MOL IMMUNOL, V128, P89, DOI 10.1016/j.molimm.2020.09.019
  40. Wang PL, 2013, PART FIBRE TOXICOL, V10, DOI 10.1186/1743-8977-10-29
  41. WHO. World Health Organization, 2016, AMBIENT AIR POLLUTIO
  42. WHO. World Health Organization, 2005, AIR QUAL GUID GLOB U
  43. Woo LN, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-24574-x
  44. Yan W, 2020, ENVIRON SCI POLLUT R, V27, P29280, DOI 10.1007/s11356-020-09014-6
  45. Yang SI, 2020, PEDIATR PULM, V55, P245, DOI 10.1002/ppul.24575
  46. Yoshizaki K, 2017, SCI TOTAL ENVIRON, V586, P284, DOI 10.1016/j.scitotenv.2017.01.221
  47. Zhang HH, 2017, ENVIRON RES, V159, P519, DOI 10.1016/j.envres.2017.08.038
  48. Zhou J, 2021, ENVIRON TOXICOL, V36, P177, DOI 10.1002/tox.23023