Protocol for evaluating the effects of a foot-ankle therapeutic exercise program on daily activity, foot-ankle functionality, and biomechanics in people with diabetic polyneuropathy: a randomized controlled trial

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
BMC MUSCULOSKELETAL DISORDERS, v.19, article ID 400, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundDiabetic polyneuropathy (DPN) negatively affects foot and ankle function (strength and flexibility), which itself affects the daily physical activity and quality of life of patients. A physical therapy protocol aiming to strengthen the intrinsic and extrinsic foot muscles and increase flexibility may be a promising approach to improve lower-extremity function, prevent further complications, and improve autonomy for daily living activities in these patients. Thus, the inclusion of a specific foot-related exercises focused on the main musculoskeletal impairments may have additional effects to the conventional interventions in the diabetic foot.Methods/DesignA prospective, parallel-group, outcome-assessor blinded, randomized controlled trial (RCT) will be conducted in 77 patients with DPN who will be randomly allocated to usual care (control arm) or usual care with supervised foot-ankle exercises aiming to increase strengh and flexibility twice a week for 12weeks and remotely supervised foot-ankle exercises for a year through a web software. Patients will be evaluated 5 times in a 1year period regarding daily physical activity level, self-selected and fast gait speeds (primary outcomes), foot ulcer incidence, ulcer risk classification, neuropathy testing, passive ankle range of motion, quality of life, foot health and functionality, foot muscle strength, plantar pressure, and foot-ankle kinematics and kinetics during gait.DiscussionThis study aims to assess the effect of a foot-ankle strength and flexibility program on a wide range of musculoskeletal, activity-related, biomechanical, and clinical outcomes in DPN patients. We intend to demonstrate evidence that the year-long training program is effective in increasing gait speed and daily physical activity level and in improving quality of life; foot strength, functionality, and mobility; and biomechanics while walking. The results will be published as soon as they are available.Trial registrationThis study has been registered at ClinicalTrials.gov as NCT02790931 (June 6, 2016) under the name Effects of foot muscle strengthening in daily activity in diabetic neuropathic patients.
Palavras-chave
Diabetic neuropathies, Exercise, Diabetic foot, Foot ulcer, Clinical trial, Physical therapy
Referências
  1. Alam U, 2017, DIABETES THER, V8, P1253, DOI 10.1007/s13300-017-0295-y
  2. Allet L, 2010, GAIT POSTURE, V32, P185, DOI 10.1016/j.gaitpost.2010.04.013
  3. Allet L, 2010, DIABETOLOGIA, V53, P458, DOI 10.1007/s00125-009-1592-4
  4. Allet L, 2009, DIABETIC MED, V26, P1003, DOI 10.1111/j.1464-5491.2009.02811.x
  5. Armstrong DG, 2017, NEW ENGL J MED, V376, P2367, DOI 10.1056/NEJMra1615439
  6. Bacarin TA, 2009, CLINICS, V64, P113, DOI 10.1590/S1807-59322009000200008
  7. Bakker K, 2012, DIABETES-METAB RES, V28, P225, DOI 10.1002/dmrr.2253
  8. Bohannon RW, 2014, J EVAL CLIN PRACT, V20, P295, DOI 10.1111/jep.12158
  9. Boulton AJM, 2008, DIABETES CARE, V31, P1679, DOI 10.2337/dc08-9021
  10. Bus SA, 2016, DIABETES-METAB RES, V32, P16, DOI 10.1002/dmrr.2696
  11. Bus SA, 2002, DIABETES CARE, V25, P1444, DOI 10.2337/diacare.25.8.1444
  12. Bus SA, 2009, DIABETES CARE, V32, P1063, DOI 10.2337/dc08-2174
  13. Butugan MK, 2014, J ELECTROMYOGR KINES, V24, P465, DOI 10.1016/j.jelekin.2014.04.007
  14. Chan AW, 2013, ANN INTERN MED, V158, P200, DOI 10.7326/0003-4819-158-3-201302050-00583
  15. Cheuy VA, 2013, CLIN BIOMECH, V28, P1055, DOI 10.1016/j.clinbiomech.2013.10.006
  16. Crawford F., 2006, QJM, V100, P65, DOI [10.1093/qjmed/hcl140, DOI 10.1093/QJMED/HCL140]
  17. DEMPSTER WT, 1967, AM J ANAT, V120, P33, DOI 10.1002/aja.1001200104
  18. Dixit S, 2014, J DIABETES COMPLICAT, V28, P332, DOI 10.1016/j.jdiacomp.2013.12.006
  19. Eggenberger P, 2015, CLIN INTERV AGING, V10, P1711, DOI 10.2147/CIA.S91997
  20. Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149
  21. FEBNMSHS A, 2016, INT J PHARMTECH RES, V9, P151
  22. Ferreira AFB, 2008, CLINICS, V63, P595, DOI 10.1590/S1807-59322008000500005
  23. Ferreira JP, 2017, CLIN BIOMECH, V43, P67, DOI [10.1016/j.clinbiomech.2017.02.009, 10.1016/j.clinbiomech.2017.02.003]
  24. Ferreira PL, 2013, ACTA MEDICA PORT, V26, P664
  25. Fonseca-guedes CHF, 2014, DIABETES RES CLIN ME, V3, P5, DOI [10.7243/2050-0866-3-5, DOI 10.7243/2050-0866-3-5]
  26. Frykberg RG, 1998, DIABETES CARE, V21, P1714, DOI 10.2337/diacare.21.10.1714
  27. Giacomozzi C, 2002, DIABETES CARE, V25, P1451, DOI 10.2337/diacare.25.8.1451
  28. Giacomozzi C, 2000, MED BIOL ENG COMPUT, V38, P156, DOI 10.1007/BF02344770
  29. Goldsmith JR, 2002, J AM PODIAT MED ASSN, V92, P483, DOI 10.7547/87507315-92-9-483
  30. Gomes A.A., 2007, FISIOTER PESQUI, V14, P14
  31. Gomes AA, 2011, MUSCLE NERVE, V44, P258, DOI 10.1002/mus.22051
  32. Grewal GS, 2015, GERONTOLOGY, V61, P567, DOI 10.1159/000371846
  33. Hanewinckel R, 2017, NEUROLOGY, V89, P76, DOI 10.1212/WNL.0000000000004067
  34. Haukoos JS, 2007, ACAD EMERG MED, V14, P662, DOI 10.1197/j.aem.2006.11.037
  35. Huijgen BCH, 2008, J TELEMED TELECARE, V14, P249, DOI 10.1258/jtt.2008.080104
  36. Hunt CW, 2015, WORLD J DIABETES, V6, P225, DOI 10.4239/wjd.v6.i2.225
  37. Jeng C, 2000, FOOT ANKLE INT, V21, P501, DOI 10.1177/107110070002100609
  38. Kluding PM, 2013, EFFECT EXERCISE NEUR, V26, P424
  39. LeMaster JW, 2008, PHYS THER, V88, P1385, DOI 10.2522/ptj.20080019
  40. Lunes DH, 2014, PLOS ONE, V9, P1
  41. Maluf KS, 2003, CLIN BIOMECH, V18, P567, DOI 10.1016/S0268-0033(03)00118-9
  42. Matos M, 2018, DIABETES RES CLIN PR, V139, P81, DOI 10.1016/j.diabres.2018.02.020
  43. Melai T, 2013, J FOOT ANKLE RES, V6, DOI 10.1186/1757-1146-6-41
  44. Mickle KJ, 2009, CLIN BIOMECH, V24, P787, DOI 10.1016/j.clinbiomech.2009.08.011
  45. Mueller MJ, 2013, ARCH PHYS MED REHAB, V94, P829, DOI 10.1016/j.apmr.2012.12.015
  46. Mueller MJ, 2003, J BIOMECH, V36, P1009, DOI 10.1016/S0021-9290(03)00078-2
  47. MUELLER MJ, 1994, PHYS THER, V74, P299, DOI 10.1093/ptj/74.4.299
  48. Perkins BA, 2001, DIABETES CARE, V24, P250, DOI 10.2337/diacare.24.2.250
  49. Pratskevich M.A.H, 2014, THESIS
  50. Randelli P, 2008, ARTHROSCOPY, V24, P834, DOI 10.1016/j.arthro.2008.01.011
  51. Rao ST, 2007, CLIN BIOMECH, V22, P464, DOI 10.1016/j.clinbiomech.2006.11.013
  52. Rao S, 2010, GAIT POSTURE, V31, P251, DOI 10.1016/j.gaitpost.2009.10.016
  53. Resnick B, 2001, J Nurs Meas, V9, P275
  54. Richardson JK, 2001, ARCH PHYS MED REHAB, V82, P205, DOI 10.1053/apmr.2001.19742
  55. Rojhani-Shirazi Z, 2017, DIABETES METAB SYND, V11, pS29, DOI 10.1016/j.dsx.2016.08.020
  56. Ryerson B, 2003, DIABETES CARE, V26, P206, DOI 10.2337/diacare.26.1.206
  57. Sacco ICN, 2009, CLIN BIOMECH, V24, P687, DOI 10.1016/j.clinbiomech.2009.05.003
  58. Sacco ICN, 2016, DIABETES-METAB RES, V32, P206, DOI 10.1002/dmrr.2737
  59. Sacco ICN, 2015, DIABETES TECHNOL THE, V17, P405, DOI 10.1089/dia.2014.0284
  60. Sartor CD, 2018, BRAZ J PHYS THER, V22, P222, DOI 10.1016/j.bjpt.2017.10.004
  61. Sartor CD, 2014, BMC MUSCULOSKEL DIS, V15, DOI 10.1186/1471-2474-15-137
  62. Schaper NC, 2016, DIABETES-METAB RES, V32, P7, DOI 10.1002/dmrr.2695
  63. Shaffer S, 2005, J GERIATR PHYS THER, V28, P112, DOI 10.1519/00139143-200512000-00019
  64. Taveggia G, 2014, J MANIP PHYSIOL THER, V37, P242, DOI 10.1016/j.jmpt.2013.09.007
  65. Tuttle LJ, 2011, PHYS THER, V91, P923, DOI 10.2522/ptj.20100329
  66. van Schie CHM, 2008, DIABETES-METAB RES, V24, pS45, DOI 10.1002/dmrr.856
  67. Waaijman R, 2014, DIABETES CARE, V37, P1697, DOI 10.2337/dc13-2470
  68. Watari R, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-11