Identification of miRnas with possible prognostic roles for HAM/TSP

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS INC
Autores
SOUZA, Daniela Raguer Valadao de
PESSOA, Rodrigo
MARCUSSO, Rosa Nascimento
OLIVEIRA, Augusto Cesar Penalva de
CLISSA, Patricia Bianca
Citação
VIRULENCE, v.14, n.1, article ID 2230015, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropic spastic paraparesis (HAM/TSP) is an insidiously progressive spinal cord disease for which there is no effective treatment. There is great interest in developing potential biomarkers to predict the pathogenesis of HAM/TSP disease. In this study, Illumina Massive Parallel Sequencing (MPS) technology was used to investigate the cellular global noncoding RNAome expression profile in HAM/TSP patients (n = 10), asymptomatic HTLV-1-infected carriers (ASP, n = 8), and a second group of healthy controls (n = 5). Various bioinformatics tools were used to align, annotate, and profile the sRNA-MPS reads. Among the 402 sRNAs detected, 251 were known and 50 were potentially novel sRNAs in the HAM and ASP groups compared with the HC group. Sixty-eight known sRNAs were significantly different between the ASP and HAM groups. Eighty-eight mature miRNAs were downregulated in subjects from HAM compared with ASP. Three of these miRs (hsa-miR-185-5p, 32-5p, and 192-5p) have the potential to be used as biomarkers for predicting the pathogenesis of HAM/TSP. The seven most deregulated miRs target genes have been associated with a variety of biological processes and molecular functions. The reactome pathways relevant to our findings provide a rich source of data and offer the opportunity to better understand sRNA regulation and function in HTLV-1 pathophysiology. To the best of our knowledge, this study is the first to demonstrate evaluates sRNAs in HTLV-1 patients with HAM/TSP.
Palavras-chave
Small RNA, HTLV-1, HAM, TSP, massive parallel sequencing, >
Referências
  1. Abe M, 2010, FEBS LETT, V584, P4313, DOI 10.1016/j.febslet.2010.09.031
  2. Ambros V, 2003, RNA, V9, P277, DOI 10.1261/rna.2183803
  3. Ando H, 2013, BRAIN, V136, P2876, DOI 10.1093/brain/awt183
  4. Araujo A, 2021, NEUROL-CLIN PRACT, V11, P49, DOI 10.1212/CPJ.0000000000000832
  5. Aushev VN, 2018, CLIN CANCER RES, V24, P581, DOI 10.1158/1078-0432.CCR-17-0996
  6. Bangham CRM, 2015, NAT REV DIS PRIMERS, V1, DOI 10.1038/nrdp.2015.12
  7. Bellon M, 2009, BLOOD, V113, P4914, DOI 10.1182/blood-2008-11-189845
  8. Brennecke J, 2003, CELL, V113, P25, DOI 10.1016/S0092-8674(03)00231-9
  9. Chung ACK, 2010, J AM SOC NEPHROL, V21, P1317, DOI 10.1681/ASN.2010020134
  10. Clissa PB, 2016, DATA BRIEF, V9, P685, DOI 10.1016/j.dib.2016.09.052
  11. Correia CN, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00118
  12. Coutinho R, 2014, BMC INFECT DIS, V14, DOI 10.1186/1471-2334-14-453
  13. Cox MB, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0012132, 10.1371/journal.pone.0011044]
  14. Desai SS, 2011, J HAND SURG-AM, V36A, P936, DOI 10.1016/j.jhsa.2011.03.002
  15. Drury RE, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01182
  16. Farazi TA, 2008, DEVELOPMENT, V135, P1201, DOI 10.1242/dev.005629
  17. Gazon H, 2016, ONCOTARGET, V7, P30258, DOI 10.18632/oncotarget.7162
  18. Gessain A, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00388
  19. Grant C, 2008, BLOOD, V111, P5601, DOI 10.1182/blood-2007-11-123430
  20. Grassmann R, 2008, BBA-GENE REGUL MECH, V1779, P706, DOI 10.1016/j.bbagrm.2008.05.005
  21. Griffiths-Jones S, 2003, NUCLEIC ACIDS RES, V31, P439, DOI 10.1093/nar/gkg006
  22. Guo L, 2011, EXP HEMATOL, V39, P608, DOI 10.1016/j.exphem.2011.01.011
  23. Haziot ME, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0006967
  24. HENEINE W, 1992, J CLIN MICROBIOL, V30, P1605, DOI 10.1128/JCM.30.6.1605-1607.1992
  25. Ho YK, 2012, J VIROL, V86, P9474, DOI 10.1128/JVI.00158-12
  26. Huang C, 2014, J DIGEST DIS, V15, P614, DOI 10.1111/1751-2980.12185
  27. Jopling CL, 2005, SCIENCE, V309, P1577, DOI 10.1126/science.1113329
  28. Kato M, 2007, P NATL ACAD SCI USA, V104, P3432, DOI 10.1073/pnas.0611192104
  29. Khan RB, 2001, NEUROLOGIST, V7, P271, DOI 10.1097/00127893-200109000-00001
  30. Kumar M, 2015, CELL HOST MICROBE, V17, P345, DOI 10.1016/j.chom.2015.01.007
  31. Langenberger D, 2010, BIOCOMPUT-PAC SYM, P80
  32. Lecellier CH, 2005, SCIENCE, V308, P557, DOI 10.1126/science.1108784
  33. Lekka E, 2018, FEBS LETT, V592, P2884, DOI 10.1002/1873-3468.13182
  34. Li JQ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099442
  35. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  36. Martins RD, 2018, FREE RADICAL BIO MED, V115, P371, DOI 10.1016/j.freeradbiomed.2017.11.022
  37. Matsuoka M, 2007, NAT REV CANCER, V7, P270, DOI 10.1038/nrc2111
  38. Matsuura E, 2016, J NEUROL SCI, V371, P112, DOI 10.1016/j.jns.2016.10.030
  39. Mattick JS, 2006, HUM MOL GENET, V15, pR17, DOI 10.1093/hmg/ddl046
  40. Merling R, 2007, RETROVIROLOGY, V4, DOI 10.1186/1742-4690-4-35
  41. Nascimento A, 2021, INFECT AGENTS CANCER, V16, DOI 10.1186/s13027-020-00343-2
  42. Olindo S, 2005, J NEUROL SCI, V237, P53, DOI 10.1016/j.jns.2005.05.010
  43. OSAME M, 1990, HUMAN RETROVIROLOGY : HTLV, P191
  44. Pessoa R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093374
  45. Pichler K, 2008, RETROVIROLOGY, V5, DOI 10.1186/1742-4690-5-100
  46. POIESZ BJ, 1980, P NATL ACAD SCI-BIOL, V77, P7415, DOI 10.1073/pnas.77.12.7415
  47. Regev K, 2016, NEUROL-NEUROIMMUNOL, V3, DOI 10.1212/NXI.0000000000000267
  48. Ruddy MJ, 2004, J BIOL CHEM, V279, P2559, DOI 10.1074/jbc.M308809200
  49. Santhakumar D, 2010, P NATL ACAD SCI USA, V107, P13830, DOI 10.1073/pnas.1008861107
  50. Sato T, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.01651
  51. Sato T, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002479
  52. Shang J, 2016, BBA-MOL CELL RES, V1863, P520, DOI 10.1016/j.bbamcr.2016.01.005
  53. Shen F, 2006, J BIOL CHEM, V281, P24138, DOI 10.1074/jbc.M604597200
  54. Smith KM, 2012, J IMMUNOL, V189, P1567, DOI 10.4049/jimmunol.1103171
  55. Sticht C, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206239
  56. Sun L, 2011, J PATHOL, V225, P364, DOI 10.1002/path.2961
  57. Swaminathan S, 2012, J IMMUNOL, V188, P6238, DOI 10.4049/jimmunol.1101196
  58. Tomita Mariko, 2012, ISRN Microbiol, V2012, P978607, DOI 10.5402/2012/978607
  59. Trobaugh DW, 2017, TRENDS MOL MED, V23, P80, DOI 10.1016/j.molmed.2016.11.003
  60. de Souza DRV, 2020, ONCOL LETT, V20, P2311, DOI 10.3892/ol.2020.11803
  61. Van Duyne R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040662
  62. Wang B, 2010, DIABETES, V59, P1794, DOI 10.2337/db09-1736
  63. Wang Y, 2013, EUR J CELL BIOL, V92, P123, DOI 10.1016/j.ejcb.2012.11.004
  64. Wen WT, 2015, J INFECTION, V70, P631, DOI 10.1016/j.jinf.2014.12.001
  65. Wienholds E, 2003, NAT GENET, V35, P217, DOI 10.1038/ng1251
  66. Xu PZ, 2003, CURR BIOL, V13, P790, DOI 10.1016/S0960-9822(03)00250-1
  67. Yamagishi M, 2012, CANCER CELL, V21, P121, DOI 10.1016/j.ccr.2011.12.015
  68. Yamano Y, 2002, BLOOD, V99, P88, DOI 10.1182/blood.V99.1.88
  69. Yamano Y, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00389
  70. Yeung ML, 2008, CANCER RES, V68, P8976, DOI 10.1158/0008-5472.CAN-08-0769
  71. Zheng ZH, 2013, J VIROL, V87, P5645, DOI 10.1128/JVI.02655-12