ALESSANDRA CHOQUETA DE TOLEDO ARRUDA

(Fonte: Lattes)
Índice h a partir de 2011
16
Projetos de Pesquisa
Unidades Organizacionais
LIM/20 - Laboratório de Terapêutica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • article 10 Citação(ões) na Scopus
    Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells
    (2015) SERIANI, Robson; JUNQUEIRA, Mara S.; CARVALHO-SOUSA, Claudia E.; ARRUDA, Alessandra Ct.; MARTINEZ, Diana; ALENCAR, Adriano M.; GARIPPO, Ana L.; BRITO, Jose Mara; MARTINS, Milton A.; SALDIVA, Paulo H. N.; NEGRI, Elnara M.; MAUAD, Thais; MACCHIONE, Mariangela
    This study assessed the effects of the diesel exhaust particles on ERR and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERR were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MIT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.
  • article 22 Citação(ões) na Scopus
    Chronic exposure of diesel exhaust particles induces alveolar enlargement in mice
    (2015) YOSHIZAKI, Kelly; BRITO, Jose Mara; MORIYA, Henrique T.; TOLEDO, Alessandra C.; FERZILAN, Sandra; OLIVEIRA, Ana Paula Ligeiro de; MACHADO, Isabel D.; FARSKY, Sandra H. P.; SILVA, Luiz F. F.; MARTINS, Milton A.; SALDIVA, Paulo H. N.; MAUAD, Thais; MACCHIONE, Mariangela
    Background: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. Methods: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 mu g/m(3)). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 mu g/10 mu L of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-gamma) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). Results: DEP decreased IFN-gamma levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p <= 0.001) and CD8+ T cells (p <= 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p <= 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. Conclusion: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.
  • article 51 Citação(ões) na Scopus
    Airway epithelium mediates the anti-inflammatory effects of exercise on asthma
    (2011) VIEIRA, Rodolfo Paula; TOLEDO, Alessandra Choqueta de; FERREIRA, Sergio Cesar; SANTOS, Angela Batista Gomes dos; MEDEIROS, Maria Cristina Rodrigues; HAGE, Marcia; MAUAD, Thais; MARTINS, Milton de Arruda; DOLHNIKOFF, Marisa; CARVALHO, Celso Ricardo Fernandes de
    Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium.
  • article 22 Citação(ões) na Scopus
    Diesel Exhaust Particulates Affect Cell Signaling, Mucin Profiles, and Apoptosis in Trachea Explants of Balb/C Mice
    (2015) SERIANI, Robson; JUNQUEIRA, Mara de Souza; TOLEDO, Alessandra Choqueta de; MARTINS, Milton Arruda; SECKLER, Marcelo; ALENCAR, Adriano Mesquita; NEGRI, Elnara Marcia; SILVA, Luiz Fernando Ferraz; MAUAD, Thais; SALDIVA, Paulo Hilario Nascimento; MACCHIONE, Mariangela
    Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+)), neutral (PAS(+)), or mixed (AB/PAS(+)) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 mu g/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 mu g/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 mu g/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 mu g/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 mu g/mL DEP for 30 min or 60 min showed a significant increase (p< 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases. (C) 2014 Wiley Periodicals, Inc.
  • conferenceObject
    The composition of diesel exhaust particles affects differently the cell signaling and cytoskeleton in bronchial epithelial cells
    (2014) MACCHIONE, Mariangela; SERIANI, Robson; JUNQUEIRA, Mara S.; TOLEDO, Alessandra C.; MARTINEZ, Diana; ALENCAR, Adriano M.; MARTINS, Milton A.; SALDIVA, Paulo H. N.; NEGRI, Elnara M.; MAUAD, Thais
  • article 9 Citação(ões) na Scopus
    Organic and Inorganic Fractions of Diesel Exhaust Particles Produce Changes in Mucin Profile of Mouse Trachea Explants
    (2015) SERIANI, Robson; JUNQUEIRA, Mara S.; TOLEDO, Alessandra C.; CORREA, Aristides T.; SILVA, Luiz F. F.; MARTINS, Milton A.; SALDIVA, Paulo H. N.; MAUAD, Thais; MACCHIONE, Mariangela
    Diesel exhaust particles (DEP) contain organic and inorganic elements that produce damage to the respiratory epithelium. The aim of this study was to determine the mucus profile of tracheal explants exposed to either crude diesel exhaust particles (DEP) or DEP treated with nitric acid (DEP/NA), with hexane (DEP/HEX), or with methanol (DEP/MET) at concentrations of 50 and 100 mu g/ml for 30 and 60 min. Tracheal explants were subjected to morphometric analyses to study acidic (AB+), neutral (PAS+), and mixed (AB+/PAS+) mucus production and vacuolization (V). Incubation with 50 mu g/ml crude DEP resulted in a rise in acid mucus production, an increase in vacuolization at 30 min, and reduction in neutral mucus at 30 and 60 min. Tracheas exposed to DEP/MET at 50 mu g/ml for 30 or 60 min resulted in a significant decrease in neutral mucus production and an elevation in acid mucus production. DEP/HEX increased vacuolization at both 50 and 100 mu g/ml at 30 and 60 min of exposure. Treatment with 50 mu g/ml for 30 or 60 min significantly elevated mixed mucus levels. These results suggest that DEP appear to be more toxic when administered in combination with HEX or MET. DEP/MET modified the mucus profile of the epithelium, while DEP/HEX altered mucus extrusion, and these responses might be due to bioavailability of individual elements in DEP fractions.
  • article 17 Citação(ões) na Scopus
    Acute cardiopulmonary effects induced by the inhalation of concentrated ambient particles during seasonal variation in the city of Sao Paulo
    (2014) BRITO, Jose Mara de; MACCHIONE, Mariangela; YOSHIZAKI, Kelly; TOLEDO-ARRUDA, Alessandra Choqueta; SARAIVA-ROMANHOLO, Beatriz Mangueira; ANDRADE, Maria de Fatima; MAUAD, Thais; RIVERO, Dolores Helena Rodriguez Ferreira; SALDIVA, Paulo Hilario Nascimento
    Ambient particles may undergo modifications to their chemical composition as a consequence of climatic variability. The determination of whether these changes modify the toxicity of the particles is important for the understanding of the health effects associated with particle exposure. The objectives were to determine whether low levels of particles promote cardiopulmonary effects, and to assess if the observed alterations are influenced by season. Mice were exposed to 200 mu g/m(3) concentrated ambient particles (CAPs) and filtered air (FA) in cold/dry and warm/humid periods. Lung hyperresponsiveness, heart rate, heart rate variability, and blood pressure were evaluated 30 min after each exposure. After 24 h, blood and tissue samples were collected. During both periods (warm/humid and cold/dry), CAPs induced alterations in red blood cells and lung inflammation. During the cold/dry period, CAPs reduced the mean corpuscular volume levels and increased erythrocytes, hemoglobin, mean corpuscular hemoglobin concentration, and red cell distribution width coefficient variation levels compared with the FA group. Similarly, CAPs during the warm/humid period decreased mean corpuscular volume levels and increased erythrocytes, hemoglobin, hematocrit, and red cell distribution width coefficient variation levels compared with the FA group. CAPs during the cold/dry period increased the influx of neutrophils in the alveolar parenchyma. Short-term exposure to low concentrations of CAPs elicited modest but significant pulmonary inflammation and, to a lesser extent, changes in blood parameters. In addition, our data support the concept that changes in climate conditions slightly modify particle toxicity because equivalent doses of CAPs in the cold/dry period produced a more exacerbated response.