Chronic exposure of diesel exhaust particles induces alveolar enlargement in mice

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
MORIYA, Henrique T.
FERZILAN, Sandra
OLIVEIRA, Ana Paula Ligeiro de
MACHADO, Isabel D.
FARSKY, Sandra H. P.
Citação
RESPIRATORY RESEARCH, v.16, article ID 18, 10p, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. Methods: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 mu g/m(3)). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 mu g/10 mu L of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-gamma) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). Results: DEP decreased IFN-gamma levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p <= 0.001) and CD8+ T cells (p <= 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p <= 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. Conclusion: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.
Palavras-chave
Air pollution, Diesel exhaust particulate, Lung, Lymphocyte, Mice
Referências
  1. American Thoracic Society, 2000, AM J RESP CRIT CARE, V161, P665
  2. Biselli PJC, 2011, BRAZ J MED BIOL RES, V44, P460, DOI 10.1590/S0100-879X2011007500040
  3. Brook RD, 2012, J AM COLL CARDIOL, V60, P2167, DOI 10.1016/j.jacc.2012.08.974
  4. Chen ZH, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003316
  5. Chen ZH, 2010, P NATL ACAD SCI USA, V107, P18880, DOI 10.1073/pnas.1005574107
  6. CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999
  7. Clarke RW, 1999, INHAL TOXICOL, V11, P637
  8. Davel AP, 2012, TOXICOLOGY, V295, P39, DOI 10.1016/j.tox.2012.02.004
  9. Deiuliis JA, 2012, AM J PHYSIOL-LUNG C, V302, pL399, DOI 10.1152/ajplung.00261.2011
  10. Deng XB, 2013, TOXICOL IN VITRO, V27, P1762, DOI 10.1016/j.tiv.2013.05.004
  11. de Oliveira APL, 2007, AM J PHYSIOL-CELL PH, V293, pC1120, DOI 10.1152/ajpcell.00286.2006
  12. DOCKERY DW, 1993, NEW ENGL J MED, V329, P1753, DOI 10.1056/NEJM199312093292401
  13. Eisner MD, 2010, AM J RESP CRIT CARE, V182, P693, DOI 10.1164/rccm.200811-1757ST
  14. Gan WQ, 2013, AM J RESP CRIT CARE, V187, P721, DOI 10.1164/rccm.201211-2004OC
  15. Ghio AJ, 2012, CURR OPIN PULM MED, V18, P144, DOI 10.1097/MCP.0b013e32834f0e2a
  16. Hagiwara E, 2001, CYTOKINE, V14, P121, DOI 10.1006/cyto.2001.0860
  17. Kim WD, 2013, RESPIROLOGY, V18, P688, DOI 10.1111/resp.12069
  18. Lankford SM, 2005, IN VITRO CELL DEV-AN, V41, P217
  19. Larsson BM, 2007, EUR RESPIR J, V29, P699, DOI 10.1183/09031936.00035706
  20. Lopes FDTQS, 2009, ENVIRON RES, V109, P544, DOI 10.1016/j.envres.2009.03.002
  21. Manners S, 2014, J ALLERGY CLIN IMMUN, V134, P63, DOI 10.1016/j.jaci.2013.10.047
  22. MARGRAF LR, 1991, AM REV RESPIR DIS, V143, P391
  23. Mauad T, 2008, AM J RESP CRIT CARE, V178, P721, DOI 10.1164/rccm.200803-436OC
  24. Mitzner W, 2008, ANN BIOMED ENG, V36, P2111, DOI 10.1007/s10439-008-9538-4
  25. Parameswaran H, 2006, J APPL PHYSIOL, V100, P186, DOI 10.1152/japplphysiol.00424.2005
  26. Salvi SS, 2009, LANCET, V374, P733, DOI 10.1016/S0140-6736(09)61303-9
  27. Schikowski T, 2005, RESP RES, V6, DOI 10.1186/1465-9921-6-152
  28. Shaykhiev R, 2009, J IMMUNOL, V183, P2867, DOI 10.4049/jimmunol.0900473
  29. Sint T, 2008, INHAL TOXICOL, V20, P25, DOI 10.1080/08958370701758759
  30. Souza MB, 1998, CHEST, V113, P1312, DOI 10.1378/chest.113.5.1312
  31. Stenfors N, 2004, EUR RESPIR J, V23, P82, DOI 10.1183/09031936.03.00004603
  32. Sunyer J, 2000, AM J EPIDEMIOL, V151, P50
  33. Takubo Y, 2002, AM J RESP CRIT CARE, V166, P1596, DOI 10.1164/rccm.2202001
  34. Tamagawa E, 2008, AM J PHYSIOL-LUNG C, V295, pL79, DOI 10.1152/ajplung.00048.2007
  35. Thebaud B, 2007, AM J RESP CRIT CARE, V175, P978, DOI 10.1164/rccm.200611-1660PP
  36. Torres-Duque Carlos, 2008, Proc Am Thorac Soc, V5, P577, DOI 10.1513/pats.200707-100RP
  37. Vermylen J, 2005, J THROMB HAEMOST, V3, P1955, DOI 10.1111/j.1538-7836.2005.01471.x
  38. Viegi G, 2006, RESPIROLOGY, V11, P523, DOI 10.1111/j.1400-1843.2006.00886.x
  39. World Health Organization, WHO AIR QUAL GUID GL
  40. Yin XJJ, 2004, TOXICOL SCI, V77, P263, DOI 10.1093/toxsci/kfh035
  41. Yoshizaki K, 2010, INHAL TOXICOL, V22, P610, DOI 10.3109/08958371003621633
  42. Zhu LX, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055695