GABRIELA CASTILHO

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • conferenceObject
    N-acetylcystein Reduces Lipid Peroxidation and Advanced Glycation Related to Prevention of Macrophage Endoplasmic Reticulum Stress Induced by Albumin Isolated from Rats With Chronic Kidney Disease
    (2014) MACHADO, Juliana T.; IBORRA, Rodrigo T.; FUSCO, Fernanda B.; CASTILHO, Gabriela; PINTO, Raphael S.; MACHADO-LIMA, Adriana; NAKANDAKARE, Edna R.; SHIMIZU, Maria Heloisa M.; SEGURO, Antonio Carlos; CATANOZI, Sergio; PASSARELLI, Marisa
  • conferenceObject
    Palmitic Interesterified Fat Induces Atherosclerosis and Inflammatory Cytokine Secretion in LDL Receptor Knockout Mice
    (2014) AFONSO, Milessa S.; LAVRADOR, Maria Silvia F.; KOIKE, Marcia; BOMBO, Renata P.; NUNES, Valeria S.; CATANOZI, Sergio; CASTILHO, Gabriela; PASSARELLI, Marisa; NAKANDAKARE, Edna R.; LOTTENBERG, Ana Maria
  • article 30 Citação(ões) na Scopus
    The impact of dietary fatty acids on macrophage cholesterol homeostasis
    (2014) AFONSOA, Milessa da Silva; CASTILHO, Gabriela; LAVRADOR, Maria Silvia Ferrari; PASSARELLI, Marisa; NAKANDAKARE, Edna Regina; LOTTENBERG, Simao Augusto; LOTTENBERG, Ana Maria
    The impact of dietary fatty acids in atherosclerosis development may be partially attributed to their effect on macrophage cholesterol homeostasis. This process is the result of interplay between cholesterol uptake and efflux, which are permeated by inflammation and oxidative stress. Although saturated fatty acids (SAFAs) do not influence cholesterol efflux, they trigger endoplasmic reticulum stress, which culminates in increased lectin-like oxidized LDL (oxLDL) receptor (LOX1) expression and, consequently, oxLDL uptake, leading to apoptosis. Unsaturated fatty acids prevent most SAFAs-mediated deleterious effects and are generally associated with reduced cholesterol efflux, although alpha-linolenic acid increases cholesterol export. Trans fatty acids increase macrophage cholesterol content by reducing ABCA-1 expression, leading to strong atherosclerotic plaque formation. As isomers of conjugated linoleic acid (CLAs) are strong PPAR gamma ligands, they induce cluster of differentiation (CD36) expression, increasing intracellular cholesterol content. Considering the multiple effects of fatty acids on intracellular signaling pathways, the purpose of this review is to address the role of dietary fat in several mechanisms that control macrophage lipid content, which can determine the fate of atherosclerotic lesions.
  • conferenceObject
    Characterization of Glycated Albumin Isolated From Poorly Controlled Diabetic Patients and Its Role in Macrophage Cholesterol Efflux
    (2014) MACHADO-LIMA, Adriana; OLIVEIRA, Erika R.; IBORRA, Rodrigo T.; CASTILHO, Gabriela; NAKANDAKARE, Edna R.; CORREA-GIANNELLA, Maria Lucia C.; TRALDI, Pietro; PORCU, Simona; ROVERSO, Marco; LAPOLLA, Annunziata; PASSARELLI, Marisa
  • article 23 Citação(ões) na Scopus
    N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1
    (2014) MACHADO, Juliana T.; IBORRA, Rodrigo T.; FUSCO, Fernanda B.; CASTILHO, Gabriela; PINTO, Raphael S.; MACHADO-LIMA, Adriana; NAKANDAKARE, Edna R.; SEGURO, Antonio C.; SHIMIZU, Maria H.; CATANOZI, Sergio; PASSARELLI, Marisa
    In chronic kidney disease (CKD) nontraditional risk factors, such as oxidative stress and advanced glycation end products (AGE) contribute to cardiovascular disease. Particularly, disturbances in reverse cholesterol transport favor the development of atherosclerosis. We analyzed the influence of N-acetylcysteine (NAC) in CKD rats on plasma concentration of lipid peroxides (TBARS) and AGE and on the impact of serum albumin in the development of macrophage endoplasmic reticulum stress (ERS) and cholesterol efflux, namely apo A-I and HDL2-mediated cholesterol removal and ABCA-1 and ABCG-1 protein level. CKD was induced by 5/6 nephrectomy in 2-month old male Wistar rats. Controls (Sham) were false operated. Animals were treated or not with NAC (600 mg/L of water). After 60 days serum albumin was isolated by FPLC and purified by alcoholic extraction. J774 macrophages were incubated with serum albumin (1 mg/mL; 18 h) from all groups, and the expression of ERS markers (protein disulfide isomerase - PDI, Grp78 and Grp94), ABCA-1 and ABCG-1 determined by immunoblot. HDL2 or apo A-I were used for cholesterol efflux assays. Protein and lipid composition of total HDL from Sham and CKD was determined and these particles tested on their abilities to accept cell cholesterol. Comparisons were done by one-way ANOVA and Newman Keuls post test. After 60 days of CKD, body weight was 10% lower in CKD compared to Sham (p < 0.01). This was prevented by NAC. Urea, creatinine, total cholesterol (TC), triglycerides (TG) (mg/dL), proteinuria (mg/24 h) (Sham, n = 31; Sham + NAC, n = 20; CKD, n = 74; CKD + NAC, n = 32), total AGE and pentosidine (n = 8; fluorescence arbitrary unit) and TBARS (n = 7; nmoL/mL) were higher in CKD (122 +/- 8; 0.9 +/- 0.07; 151 +/- 6; 83 +/- 4; 46 +/- 2.5; 32,620 +/- 673; 16,700 +/- 1,370; 6.6 +/- 0.5, respectively) and in CKD + NAC (91.4 +/- 5; 0.6 +/- 0.02; 126 +/- 7.5; 73 +/- 6; 51 +/- 3.5; 24,720 +/- 1,114; 10,080 +/- 748; 4.5 +/- 0.5, respectively) in comparison to Sham (41 +/- 0.9; 0.4 +/- 0.03; 76 +/- 2.7; 51.5 +/- 3; 14 +/- 0.9; 21,750 +/- 960; 5,314 +/- 129; 2.0 +/- 0.2, respectively; p < 0.001) and Sham + NAC (40 +/- 0.9; 0.3 +/- 0.02; 76 +/- 2.6; 68 +/- 4; 18.4 +/- 1.5; 20,040 +/- 700; 5,050 +/- 267; 1.8 +/- 0.2, respectively; p < 0.001). TC, urea, creatinine, total AGE, pentosidine and TBARS were respectively, 17%, 25%, 33%, 24%, 40% and 28% (p < 0.01) lower in CKD + NAC, than in CKD. Glycemia was higher in Sham + NAC (107 +/- 4.6) and CKD + NAC (107 +/- 2.6) than in Sham (96 +/- 1.8; p < 0.05) and CKD (98 +/- 1.6; p < 0.01), respectively. In macrophages (n = 6), CKD albumin increased PDI (3 and 6 times, p < 0.01) and Grp94 (66% and 80%, p < 0.01) in comparison to Sham and CKD + NAC-albumin treated cells, respectively. ABCA-1 expression was lower (87% and 70%, p < 0.001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin; ABCG-1 was higher (4 and 7 times, p < 0.001) in macrophages treated with Sham + NAC and CKD + NAC albumin, respectively in comparison to Sham and CKD albumin. Apo A-I mediated cholesterol efflux was lower (59% and 70%, p < 0.0001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin, however, the HDL2 mediated cholesterol efflux was higher (54% and 25%, p < 0. 0001) in macrophage treated with Sham + NAC albumin, in comparison to Sham and CKD + NAC albumin, respectively. CKD-HDL was enriched in total protein and lipids compared to Sham-HDL but preserved its capacity to remove cholesterol from macrophages. NAC reduces plasma lipid peroxidation and AGE and abrogates ERS induced by CKD-albumin. Despite diminishing ABCA-1, NAC increases ABCG-1 that counteracts the reduction in apo A-I-mediated cholesterol efflux. NAC may contribute to attenuate the deleterious effects of CKD-albumin on lipid accumulation in macrophages helping to prevent atherogenesis in CKD.