N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
ATHEROSCLEROSIS, v.237, n.1, p.343-352, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In chronic kidney disease (CKD) nontraditional risk factors, such as oxidative stress and advanced glycation end products (AGE) contribute to cardiovascular disease. Particularly, disturbances in reverse cholesterol transport favor the development of atherosclerosis. We analyzed the influence of N-acetylcysteine (NAC) in CKD rats on plasma concentration of lipid peroxides (TBARS) and AGE and on the impact of serum albumin in the development of macrophage endoplasmic reticulum stress (ERS) and cholesterol efflux, namely apo A-I and HDL2-mediated cholesterol removal and ABCA-1 and ABCG-1 protein level. CKD was induced by 5/6 nephrectomy in 2-month old male Wistar rats. Controls (Sham) were false operated. Animals were treated or not with NAC (600 mg/L of water). After 60 days serum albumin was isolated by FPLC and purified by alcoholic extraction. J774 macrophages were incubated with serum albumin (1 mg/mL; 18 h) from all groups, and the expression of ERS markers (protein disulfide isomerase - PDI, Grp78 and Grp94), ABCA-1 and ABCG-1 determined by immunoblot. HDL2 or apo A-I were used for cholesterol efflux assays. Protein and lipid composition of total HDL from Sham and CKD was determined and these particles tested on their abilities to accept cell cholesterol. Comparisons were done by one-way ANOVA and Newman Keuls post test. After 60 days of CKD, body weight was 10% lower in CKD compared to Sham (p < 0.01). This was prevented by NAC. Urea, creatinine, total cholesterol (TC), triglycerides (TG) (mg/dL), proteinuria (mg/24 h) (Sham, n = 31; Sham + NAC, n = 20; CKD, n = 74; CKD + NAC, n = 32), total AGE and pentosidine (n = 8; fluorescence arbitrary unit) and TBARS (n = 7; nmoL/mL) were higher in CKD (122 +/- 8; 0.9 +/- 0.07; 151 +/- 6; 83 +/- 4; 46 +/- 2.5; 32,620 +/- 673; 16,700 +/- 1,370; 6.6 +/- 0.5, respectively) and in CKD + NAC (91.4 +/- 5; 0.6 +/- 0.02; 126 +/- 7.5; 73 +/- 6; 51 +/- 3.5; 24,720 +/- 1,114; 10,080 +/- 748; 4.5 +/- 0.5, respectively) in comparison to Sham (41 +/- 0.9; 0.4 +/- 0.03; 76 +/- 2.7; 51.5 +/- 3; 14 +/- 0.9; 21,750 +/- 960; 5,314 +/- 129; 2.0 +/- 0.2, respectively; p < 0.001) and Sham + NAC (40 +/- 0.9; 0.3 +/- 0.02; 76 +/- 2.6; 68 +/- 4; 18.4 +/- 1.5; 20,040 +/- 700; 5,050 +/- 267; 1.8 +/- 0.2, respectively; p < 0.001). TC, urea, creatinine, total AGE, pentosidine and TBARS were respectively, 17%, 25%, 33%, 24%, 40% and 28% (p < 0.01) lower in CKD + NAC, than in CKD. Glycemia was higher in Sham + NAC (107 +/- 4.6) and CKD + NAC (107 +/- 2.6) than in Sham (96 +/- 1.8; p < 0.05) and CKD (98 +/- 1.6; p < 0.01), respectively. In macrophages (n = 6), CKD albumin increased PDI (3 and 6 times, p < 0.01) and Grp94 (66% and 80%, p < 0.01) in comparison to Sham and CKD + NAC-albumin treated cells, respectively. ABCA-1 expression was lower (87% and 70%, p < 0.001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin; ABCG-1 was higher (4 and 7 times, p < 0.001) in macrophages treated with Sham + NAC and CKD + NAC albumin, respectively in comparison to Sham and CKD albumin. Apo A-I mediated cholesterol efflux was lower (59% and 70%, p < 0.0001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin, however, the HDL2 mediated cholesterol efflux was higher (54% and 25%, p < 0. 0001) in macrophage treated with Sham + NAC albumin, in comparison to Sham and CKD + NAC albumin, respectively. CKD-HDL was enriched in total protein and lipids compared to Sham-HDL but preserved its capacity to remove cholesterol from macrophages. NAC reduces plasma lipid peroxidation and AGE and abrogates ERS induced by CKD-albumin. Despite diminishing ABCA-1, NAC increases ABCG-1 that counteracts the reduction in apo A-I-mediated cholesterol efflux. NAC may contribute to attenuate the deleterious effects of CKD-albumin on lipid accumulation in macrophages helping to prevent atherogenesis in CKD.
Palavras-chave
Chronic kidney disease, Atherosclerosis, Reverse cholesterol transport, Albumin, N-acetylcysteine
Referências
  1. Asztalos BF, 2005, J LIPID RES, V46, P2246, DOI 10.1194/jlr.M500187-JLR200
  2. ATTMAN PO, 1993, AM J KIDNEY DIS, V21, P573
  3. Baker WL, 2009, EUR J CARDIO-THORAC, V35, P521, DOI 10.1016/j.ejcts.2008.11.027
  4. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  5. BERG A, 2013, NATL GEOGR, V224, P6
  6. Bungert S, 2001, J BIOL CHEM, V276, P23539, DOI 10.1074/jbc.M101902200
  7. Buur JL, 2013, AM J VET RES, V74, P290, DOI 10.2460/ajvr.74.2.290
  8. Cardinal H, 2007, NEPHROL DIAL TRANSPL, V22, P409, DOI 10.1093/ndt/gfl619
  9. Carracedo J, 2011, FASEB J, V25, P1314, DOI 10.1096/fj.10-173377
  10. Castilho G, 2012, INT J BIOCHEM CELL B, V44, P1078, DOI 10.1016/j.biocel.2012.03.016
  11. Danilovic A, 2011, TRANSPL P, V43, P1443, DOI 10.1016/j.transproceed.2011.02.020
  12. de Souza Pinto Raphael, 2012, Lipids, V47, P443, DOI 10.1007/s11745-011-3647-9
  13. Diniz YS, 2006, EUR J PHARMACOL, V543, P151, DOI 10.1016/j.ejphar.2006.05.039
  14. Feldman L, 2012, HEMODIAL INT, V16, P512, DOI 10.1111/j.1542-4758.2012.00702.x
  15. FIELDING CJ, 1982, J BIOL CHEM, V257, P955
  16. Hansen B, 2002, DIABETOLOGIA, V45, P1379, DOI 10.1007/s00125-002-0912-8
  17. HAVEL RJ, 1955, J CLIN INVEST, V34, P1345, DOI 10.1172/JCI103182
  18. Himmelfarb J, 2000, KIDNEY INT, V58, P2571, DOI 10.1046/j.1523-1755.2000.00443.x
  19. Iborra RT, 2011, LIPIDS HLTH DIS, V29, P172
  20. Ivanovski O, 2005, KIDNEY INT, V67, P2288, DOI 10.1111/j.1523-1755.2005.00332.x
  21. Korou LM, 2010, LIPIDS HLTH DIS, V6, P23
  22. Krieger MH, 2006, NITRIC OXIDE-BIOL CH, V14, P12, DOI 10.1016/j.niox.2005.07.011
  23. Lin CC, 2008, BRIT J NUTR, V99, P37, DOI 10.1017/S0007114507793881
  24. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  25. Lu YG, 2011, J ATHEROSCLER THROMB, V18, P998
  26. Machado AP, 2006, INT J BIOCHEM CELL B, V38, P392, DOI 10.1016/j.biocel.2005.09.016
  27. Machado-Lima A, DIABETES METAB RES, V29, P66
  28. Massy ZA, 2005, J AM SOC NEPHROL, V16, P109, DOI 10.1681/ASN.2004060495
  29. Meerwaldt R, 2009, AM J KIDNEY DIS, V53, P138, DOI 10.1053/j.ajkd.2008.08.031
  30. Moradi H, 2009, AM J NEPHROL, V30, P147, DOI 10.1159/000210020
  31. Muller C, 2013, ANTIOXID REDOX SIGN, V18, P731, DOI 10.1089/ars.2012.4577
  32. OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3
  33. Ohkawara E, 2002, BIOL PHARM BULL, V25, P1121, DOI 10.1248/bpb.25.1121
  34. Okuda LS, 2012, BBA-MOL CELL BIOL L, V1821, P1485, DOI 10.1016/j.bbalip.2012.08.011
  35. Pageon H, 2007, EUR J DERMATOL, V17, P12
  36. Pahl MV, 2009, NEPHROL DIAL TRANSPL, V24, P2541, DOI 10.1093/ndt/gfp120
  37. REDGRAVE TG, 1975, ANAL BIOCHEM, V65, P42, DOI 10.1016/0003-2697(75)90488-1
  38. Salomon RG, 2000, CHEM RES TOXICOL, V13, P557, DOI 10.1021/tx000007u
  39. Samuni Y, 2013, BBA-GEN SUBJECTS, V1830, P4117, DOI 10.1016/j.bbagen.2013.04.016
  40. Shalansky SJ, 2005, HEART, V91, P997, DOI 10.1136/hrt.2004.053579
  41. Shimizu MHM, 2005, KIDNEY INT, V68, P2208
  42. Sung HJ, 2012, MOL BIOL REP, V39, P3001, DOI 10.1007/s11033-011-1062-1
  43. Vaziri Nosratola D, 2006, Hemodial Int, V10, P1, DOI 10.1111/j.1542-4758.2006.01168.x
  44. Vaziri ND, 2010, J RENAL NUTR, V20, pS35, DOI 10.1053/j.jrn.2010.05.010
  45. Vaziri ND, NAT REV NEPHROL, V6, P287
  46. Vaziri ND, 2011, BLOOD PURIFICAT, V31, P189, DOI 10.1159/000321845
  47. Vaziri ND, SEMIN DIAL, V22, P644
  48. Vogt L, 2006, NEPHROL DIAL TRANSPL, V21, P101, DOI 10.1093/ndt/gfi068
  49. Yang RL, 2006, NUTRITION, V22, P1185, DOI 10.1016/j.nut.2006.08.018
  50. Zhao YW, 1996, BIOCHEMISTRY-US, V35, P7174, DOI 10.1021/bi952242v
  51. Zhou HL, 2008, NEPHROL DIAL TRANSPL, V23, P927, DOI 10.1093/ndt/gfm631
  52. Zhou QG, 2012, AM J PHYSIOL-HEART C, V303, pH1154, DOI 10.1152/ajpheart.00407.2012