ACARIS BENETTI DOS SANTOS

(Fonte: Lattes)
Índice h a partir de 2011
4
Projetos de Pesquisa
Unidades Organizacionais
LIM/13 - Laboratório de Genética e Cardiologia Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • article 6 Citação(ões) na Scopus
    Influence of Long-Term Salt Diets on Cardiac Ca2+ Handling and Contractility Proteins in Hypertensive Rats
    (2018) BERGER, Rebeca Caldeira Machado; BENETTI, Acaris; GIRARDI, Adriana Castello Costa; FORECHI, Ludimila; OLIVEIRA, Rafaella Martins de; VASSALLO, Paula Frizera; MILL, Jose Geraldo
    BACKGROUND High sodium intake contributes to the pathogenesis of hypertension and adversely affects cardiac function. Conversely, sodium reduction is associated with a blood pressure decrease and improved cardiovascular function. However, the mechanisms that underlie the cardiac effects induced by salt intake in hypertension have not been fully elucidated. Ca2+ handling is critical for efficient myocardial function; thus, we aimed to investigate the long-term effects of diets with different salt contents on cardiac function and Ca2+ handling proteins in spontaneously hypertensive rats (SHRs). METHODS Cardiac function was evaluated by catheterization. Ca2+ handling and contractile proteins were evaluated by immunoblotting in hearts from SHRs fed for 6 months with diets containing high (HS, 3%), low (LS, 0.03%), or normal salt content (NS, 0.3%). Diets were introduced immediately after weaning. Tail cuff pletismography was assessed at the 3rd and 7th months of follow-up. RESULTS Compared to the NS group, the HS group exhibited worsened hypertension, increased cardiac expression of beta-myosin heavy chain (MHC), a decreased alpha/beta-MHC ratio and reduced expression of both phospholamban (PLB) and Na+/Ca2+ exchanger (NCX). LS intake attenuated the blood pressure increase and left ventricle hypertrophy, slightly decreased the cardiac contractility and relaxation index, and increased the alpha/beta-MHC ratio. These effects were accompanied by increased cardiac PLB expression and decreased Ca2+ L-type channel and NCX expression. CONCLUSIONS These findings indicate that the modulation of Ca2+ handling may be one of the molecular mechanisms underlying the effect of salt intake on myocardial function in hypertension.