Influence of Long-Term Salt Diets on Cardiac Ca2+ Handling and Contractility Proteins in Hypertensive Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
BERGER, Rebeca Caldeira Machado
FORECHI, Ludimila
OLIVEIRA, Rafaella Martins de
VASSALLO, Paula Frizera
MILL, Jose Geraldo
Citação
AMERICAN JOURNAL OF HYPERTENSION, v.31, n.6, p.726-734, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND High sodium intake contributes to the pathogenesis of hypertension and adversely affects cardiac function. Conversely, sodium reduction is associated with a blood pressure decrease and improved cardiovascular function. However, the mechanisms that underlie the cardiac effects induced by salt intake in hypertension have not been fully elucidated. Ca2+ handling is critical for efficient myocardial function; thus, we aimed to investigate the long-term effects of diets with different salt contents on cardiac function and Ca2+ handling proteins in spontaneously hypertensive rats (SHRs). METHODS Cardiac function was evaluated by catheterization. Ca2+ handling and contractile proteins were evaluated by immunoblotting in hearts from SHRs fed for 6 months with diets containing high (HS, 3%), low (LS, 0.03%), or normal salt content (NS, 0.3%). Diets were introduced immediately after weaning. Tail cuff pletismography was assessed at the 3rd and 7th months of follow-up. RESULTS Compared to the NS group, the HS group exhibited worsened hypertension, increased cardiac expression of beta-myosin heavy chain (MHC), a decreased alpha/beta-MHC ratio and reduced expression of both phospholamban (PLB) and Na+/Ca2+ exchanger (NCX). LS intake attenuated the blood pressure increase and left ventricle hypertrophy, slightly decreased the cardiac contractility and relaxation index, and increased the alpha/beta-MHC ratio. These effects were accompanied by increased cardiac PLB expression and decreased Ca2+ L-type channel and NCX expression. CONCLUSIONS These findings indicate that the modulation of Ca2+ handling may be one of the molecular mechanisms underlying the effect of salt intake on myocardial function in hypertension.
Palavras-chave
blood pressure, calcium handling, cardiac function, hyper-tension, salt diet, SHR
Referências
  1. Ahn J, 1999, AM J PHYSIOL-HEART C, V287, pH767
  2. Arruda DF, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00293
  3. Baldo MP, 2011, PHARMACOL REP, V63, P975, DOI 10.1016/S1734-1140(11)70613-2
  4. Bers DM, 2002, NATURE, V415, P198, DOI 10.1038/415198a
  5. Brasil GA, 2015, LIFE SCI, V137, P65, DOI 10.1016/j.lfs.2015.07.005
  6. CANTILINA T, 1993, J BIOL CHEM, V268, P17018
  7. Carneiro MA, 2013, J MOL CELL CARDIOL, V57, P119, DOI 10.1016/j.yjmcc.2013.01.013
  8. Chen-Izu Y, 2007, AM J PHYSIOL-HEART C, V293, pH3301, DOI 10.1152/ajpheart.00259.2007
  9. Eisner DA, 1998, CARDIOVASC RES, V38, P589, DOI 10.1016/S0008-6363(98)00062-5
  10. EVERETT AW, 1984, BIOCHEMISTRY-US, V23, P1596, DOI 10.1021/bi00303a002
  11. FROHLICH ED, 1993, AM J PHYSIOL, V264, pR30
  12. Gao F, 2011, CLIN EXP HYPERTENS, V33, P492, DOI 10.3109/10641963.2010.551795
  13. Gupta M, 1997, MOL CELL BIOCHEM, V176, P273, DOI 10.1023/A:1006865515646
  14. Kadambi VJ, 1996, J CLIN INVEST, V97, P533, DOI 10.1172/JCI118446
  15. LEE CO, 1982, BIOPHYS J, V40, P185, DOI 10.1016/S0006-3495(82)84474-3
  16. Leenen FHH, 1998, J HYPERTENS, V16, P885, DOI 10.1097/00004872-199816060-00020
  17. Ling Q, 1999, ACTA PHARM SINICA, V18, P63
  18. Lowes BD, 1997, J CLIN INVEST, V100, P2315, DOI 10.1172/JCI119770
  19. LUO WS, 1994, CIRC RES, V75, P401
  20. Berger RCM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141288
  21. Franquni JVM, 2013, STEROIDS, V78, P379, DOI 10.1016/j.steroids.2012.12.009
  22. Masaki H, 1998, J MOL CELL CARDIOL, V30, P317, DOI 10.1006/jmcc.1997.0594
  23. McCrossan ZA, 2004, CARDIOVASC RES, V63, P283, DOI 10.1016/j.cardiores.2004.04.013
  24. Morkin E, 2000, MICROSC RES TECHNIQ, V50, P522, DOI 10.1002/1097-0029(20000915)50:6<522::AID-JEMT9>3.0.CO;2-U
  25. NEGRETTI N, 1995, J PHYSIOL-LONDON, V486, P581, DOI 10.1113/jphysiol.1995.sp020836
  26. Nikcevic G, 1999, AM J PHYSIOL-HEART C, V276, pH2013, DOI 10.1152/ajpheart.1999.276.6.H2013
  27. Okamoto K, 1966, Jpn Circ J, V30, P703
  28. OKAMOTO KOZO, 1963, JAPAN CIRCULATION JOUR, V27, P282
  29. Pieske B, 2002, CIRCULATION, V106, P447, DOI 10.1161/01.CIR.0000023042.50192.F4
  30. Popov S, 2012, AM J PHYSIOL-HEART C, V303, pH57, DOI 10.1152/ajpheart.00512.2011
  31. Qi M, 1997, AM J PHYSIOL-CELL PH, V273, pC394
  32. Shorofsky SR, 1999, CIRC RES, V84, P424
  33. Slagman MCJ, 2011, BRIT MED J, V343, DOI 10.1136/bmj.d4366
  34. Varagic J, 2006, AM J PHYSIOL-HEART C, V290, pH1503, DOI 10.1152/ajpheart.00970.2005
  35. Varagic J, 2008, AM J PHYSIOL-HEART C, V294, pH853, DOI 10.1152/ajpheart.00737.2007
  36. Varagic Jasmina, 2010, Ther Adv Cardiovasc Dis, V4, P17, DOI 10.1177/1753944709353337
  37. Wang ZN, 1999, FEBS LETT, V453, P135, DOI 10.1016/S0014-5793(99)00708-5
  38. Zarain-Herzberg A, 2011, IUBMB LIFE, V63, P847, DOI 10.1002/iub.545
  39. Zwadlo C, 2005, TOXICOL APPL PHARM, V207, P244, DOI 10.1016/j.taap.2005.01.005