ACARIS BENETTI DOS SANTOS

(Fonte: Lattes)
Índice h a partir de 2011
4
Projetos de Pesquisa
Unidades Organizacionais
LIM/13 - Laboratório de Genética e Cardiologia Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 23 Citação(ões) na Scopus
    Cardioprotection Conferred by Sitagliptin Is Associated with Reduced Cardiac Angiotensin II/Angiotensin-(1-7) Balance in Experimental Chronic Kidney Disease
    (2019) BERALDO, Juliana Isa; BENETTI, Acaris; BORGES-JUNIOR, Flavio Araujo; ARRUDA-JUNIOR, Daniel F.; MARTINS, Flavia Leticia; JENSEN, Leonardo; DARIOLLI, Rafael; SHIMIZU, Maria Heloisa; SEGURO, Antonio C.; LUCHI, Weverton M.; GIRARDI, Adriana C. C.
    Dipeptidyl peptidase IV (DPPIV) inhibitors are antidiabetic agents that exert renoprotective actions independently of glucose lowering. Cardiac dysfunction is one of the main outcomes of chronic kidney disease (CKD); however, the effects of DPPIV inhibition on cardiac impairment during CKD progression remain elusive. This study investigated whether DPPIV inhibition mitigates cardiac dysfunction and remodeling in rats with a 5/6 renal ablation and evaluated if these effects are associated with changes in the cardiac renin-angiotensin system (RAS). To this end, male Wistar rats underwent a 5/6 nephrectomy (Nx) or sham operation, followed by an 8-week treatment period with the DPPIV inhibitor sitagliptin (IDPPIV) or vehicle. Nx rats had lower glomerular filtration rate, overt albuminuria and higher blood pressure compared to sham rats, whereas CKD progression was attenuated in Nx + IDPPIV rats. Additionally, Nx rats exhibited cardiac hypertrophy and fibrosis, which were associated with higher cardiac DPPIV activity and expression. The sitagliptin treatment prevented cardiac fibrosis and mitigated cardiac hypertrophy. The isovolumic relaxation time (IRVT) was higher in Nx than in sham rats, which was suggestive of CKD-associated-diastolic dysfunction. Sitagliptin significantly attenuated the increase in IRVT. Levels of angiotensin II (Ang II) in the heart tissue from Nx rats were higher while those of angiotensin-(1-7) Ang-(1-7) were lower than that in sham rats. This cardiac hormonal imbalance was completely prevented by sitagliptin. Collectively, these results suggest that DPPIV inhibition may delay the onset of cardiovascular impairment in CKD. Furthermore, these findings strengthen the hypothesis that a crosstalk between DPPIV and the renin-angiotensin system plays a role in the pathophysiology of cardiorenal syndromes.
  • article 4 Citação(ões) na Scopus
    Sex differences in the lung ACE/ACE2 balance in hypertensive rats
    (2021) MARTINS, Flavia L.; TAVARES, Caio A. M.; MALAGRINO, Pamella A.; RENTZ, Thiago; BENETTI, Acaris; RIOS, Thiago M. S.; PEREIRA, Gabriel M. D.; CARAMELLI, Bruno; TEIXEIRA, Samantha K.; KRIEGER, Jose E.; GIRARDI, Adriana C. C.
    The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 +/- 17 vs. 43 +/- 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).