Sex differences in the lung ACE/ACE2 balance in hypertensive rats

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
PORTLAND PRESS LTD
Citação
BIOSCIENCE REPORTS, v.41, n.12, article ID BSR20211201, 12p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 +/- 17 vs. 43 +/- 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).
Palavras-chave
Referências
  1. Aguet F, 2020, SCIENCE, V369, P1318, DOI 10.1126/science.aaz1776
  2. Bauer A, 2021, LANCET RESP MED, V9, P863, DOI 10.1016/S2213-2600(21)00214-9
  3. CAMBIEN F, 1994, CIRCULATION, V90, P669, DOI 10.1161/01.CIR.90.2.669
  4. Carson P, 2001, CLIN CARDIOL, V24, P183, DOI 10.1002/clc.4960240303
  5. Cohen JB, 2021, LANCET RESP MED, V9, P275, DOI 10.1016/S2213-2600(20)30558-0
  6. Crowley SD, 2005, J CLIN INVEST, V115, P1092, DOI 10.1172/JCI200523378
  7. Crowley SD, 2006, P NATL ACAD SCI USA, V103, P17985, DOI 10.1073/pnas.0605545103
  8. Dahlof B, 2002, LANCET, V359, P995, DOI 10.1016/S0140-6736(02)08089-3
  9. Danilov SM, 2016, SCI REP-UK, V6, DOI 10.1038/srep34913
  10. de Abajo FJ, 2020, LANCET, V395, P1705, DOI 10.1016/S0140-6736(20)31030-8
  11. DeLuca DS, 2012, BIOINFORMATICS, V28, P1530, DOI 10.1093/bioinformatics/bts196
  12. Epelman S, 2009, J CARD FAIL, V15, P565, DOI 10.1016/j.cardfail.2009.01.014
  13. ERDOS EG, 1987, LAB INVEST, V56, P345
  14. Fang L, 2020, LANCET RESP MED, V8, pE21, DOI 10.1016/S2213-2600(20)30116-8
  15. Gurley SB, 2011, CELL METAB, V13, P469, DOI 10.1016/j.cmet.2011.03.001
  16. Hamming I, 2004, J PATHOL, V203, P631, DOI 10.1002/path.1570
  17. Hoffmann M, 2020, CELL, V181, P271, DOI 10.1016/j.cell.2020.02.052
  18. Imai Y, 2005, NATURE, V436, P112, DOI 10.1038/nature03712
  19. Ji H, 2008, EXP PHYSIOL, V93, P648, DOI 10.1113/expphysiol.2007.041392
  20. Lambert DW, 2008, FEBS LETT, V582, P385, DOI 10.1016/j.febslet.2007.11.085
  21. Lopes RD, 2021, JAMA-J AM MED ASSOC, V325, P254, DOI 10.1001/jama.2020.25864
  22. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  23. Lu JP, 2017, LANCET, V390, P2549, DOI [10.1016/s0140-6736(17)32478-9, 10.1016/S0140-6736(17)32478-9]
  24. Maric-Bilkan C, 2012, GENDER MED, V9, P287, DOI 10.1016/j.genm.2012.06.005
  25. Martins FL, 2020, HYPERTENSION, V76, P839, DOI 10.1161/HYPERTENSIONAHA.120.14868
  26. Tavares CDM, 2020, ARQ BRAS CARDIOL, V115, P701, DOI 10.36660/abc.20200487
  27. Narula S, 2020, LANCET, V396, P968, DOI 10.1016/S0140-6736(20)31964-4
  28. Pagliaro P, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00335
  29. Patel SK, 2021, EUR RESPIR J, V57, DOI 10.1183/13993003.03730-2020
  30. Patel VB, 2014, J MOL CELL CARDIOL, V66, P167, DOI 10.1016/j.yjmcc.2013.11.017
  31. Peckham H, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19741-6
  32. Perez-Lopez FR, 2010, REPROD SCI, V17, P511, DOI 10.1177/1933719110367829
  33. Ramchand J, 2020, JACC-CARDIOVASC IMAG, V13, P655, DOI 10.1016/j.jcmg.2019.09.005
  34. Reckelhoff JF, 2018, CURR OPIN NEPHROL HY, V27, P176, DOI 10.1097/MNH.0000000000000404
  35. Regitz-Zagrosek V, 2017, PHYSIOL REV, V97, P1, DOI 10.1152/physrev.00021.2015
  36. Reindl-Schwaighofer R, 2021, AM J RESP CRIT CARE, V203, P1191, DOI 10.1164/rccm.202101-0142LE
  37. Reynolds HR, 2020, NEW ENGL J MED, V382, P2441, DOI 10.1056/NEJMoa2008975
  38. Ribichini F, 1998, CIRCULATION, V97, P147, DOI 10.1161/01.CIR.97.2.147
  39. Sarzani R, 2020, AM J PHYSIOL-LUNG C, V319, pL325, DOI 10.1152/ajplung.00189.2020
  40. Scully EP, 2020, NAT REV IMMUNOL, V20, P442, DOI 10.1038/s41577-020-0348-8
  41. Semenzato L, 2021, HYPERTENSION, V77, P833, DOI 10.1161/HYPERTENSIONAHA.120.16314
  42. Serfozo P, 2020, HYPERTENSION, V75, P173, DOI 10.1161/HYPERTENSIONAHA.119.14071
  43. Shufelt CL, 2018, ADV EXP MED BIOL, V1065, P433, DOI 10.1007/978-3-319-77932-4_27
  44. Santos RAS, 2018, PHYSIOL REV, V98, P505, DOI 10.1152/physrev.00023.2016
  45. Sriram K, 2020, BRIT J PHARMACOL, V177, P4825, DOI 10.1111/bph.15082
  46. Stranger BE, 2017, NAT GENET, V49, P1664, DOI 10.1038/ng.3969
  47. Tavares CAM, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.599729
  48. Viveiros A, 2021, AM J PHYSIOL-HEART C, V320, pH296, DOI 10.1152/ajpheart.00755.2020
  49. Zhang YY, 2017, HYPERTENSION, V70, P736, DOI 10.1161/HYPERTENSIONAHA.117.09801