KELLY YOSHIZAKI

(Fonte: Lattes)
Índice h a partir de 2011
9
Projetos de Pesquisa
Unidades Organizacionais
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 17
  • conferenceObject
    Relationship between Nrf2-Keap1 system and cell death in BEAS-2B exposed to Diesel Exhaust Particles
    (2017) FRIAS, Daniela; NUNES, Raquel; MATSUDA, Monique; YOSHIZAKI, Kelly; CARVALHO-OLIVEIRA, Regiani; PEREIRA, Daniela; VASCONCELLOS, Perola; MAUAD, Thais; MACCHIONE, Mariangela
  • conferenceObject
    Effects of air pollution on inflammation of respiratory system: Differences between male and female
    (2015) YOSHIZAKI, Kelly; LINO-DOS-SANTOS-FRANCO, Adriana; BRITO, Jose Mara; SANTOS, Thais Moraes Nascimento; VASCONCELOS, Perola; MAUAD, Thais; SALDIVA, Paulo Hilario Nascimento; MACCHIONE, Mariangela
  • article 25 Citação(ões) na Scopus
    Effects of different mechanical ventilation strategies on the mucociliary system
    (2011) PICCIN, Vivien S.; CALCIOLARI, Christiane; YOSHIZAKI, Kelly; GOMES, Susimeire; ALBERTINI-YAGI, Claudia; DOLHNIKOFF, Marisa; MACCHIONE, Mariangela; CALDINI, Elia G.; SALDIVA, Paulo H. N.; NEGRI, Elnara M.
    To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system. Experimental study. Twenty-seven male New Zealand rabbits. After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH(2)O, flow 3 L/min, FiO(2) 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH(2)O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH(2)O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH(2)O, PEEP 12 cmH(2)O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV. Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV. Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups. Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.
  • conferenceObject
    Effects Of Air Pollution On Estrogen And Dioxin/aryl Hydrocarbon Receptors Gene Expression In Nasal Epithelium Of Female/male Mice
    (2013) YOSHIZAKI, K.; BRITO, J.; FUZIWARA, C.; SANTOS, T.; KIMURA, E.; MAUAD, T.; SALDIVA, P.; MACCHIONE, M.
  • article 33 Citação(ões) na Scopus
    Acute exposure to diesel and sewage biodiesel exhaust causes pulmonary and systemic inflammation in mice
    (2018) BRITO, Jose Mara de; MAUAD, Thais; CAVALHEIRO, Guilherme Franco; YOSHIZAKI, Kelly; ANDRE, Paulo Afonso de; LICHTENFELS, Ana Julia F. C.; GUIMARAES, Eliane Tigre; RIVERO, Dolores Helena Rodriguez Ferreira; ANTONANGELO, Leila; OLIVEIRA, Luciano Basto; PEDROSO, Luiz Roberto Martins; MACCHIONE, Mariangela; SALDIVA, Paulo Hilario Nascimento
    Biodiesel is a renewable energy source that reduces particle emission, but few studies have assessed its effects. To assess the effects of acute inhalation of two doses (600 and 1200 mu g/m(3)) of diesel (DE) and biodiesel (BD) fuels on the inflammatory pulmonary and systemic profile of mice. Animals were exposed for 2 h in an inhalation chamber inside the Container Laboratory for Fuels. Heart rate, heart rate variability (HRV) and blood pressure were determined 30 min after exposure. After 24 h. we analyzed the lung inflammation using bronchoalveolar lavage fluid (BALF); neutrophil and macrophage quantification in the lung parenchyma was performed, and blood and bone marrow biomarkers as well as receptor of endothelin-A (ET-Ar), receptor of endothelin-B (ET-Br), vascular cell adhesion molecule 1 (VCAM-1), inducible nitric oxide synthase (iNOs) and isoprostane (ISO) levels in the pulmonary vessels and bronchial epithelium were evaluated. HRV increased for BD600, D600 and D1200 compared to filtered air (FA). Both fuels (DE and BD) produced alterations in red blood cells independent of the dose. BALI from the BD600 and BD1200 groups showed an increase in neutrophils compared to those of the FA group. Numeric density of the polyrnorphonuclear and mononudear cells was elevated with BD600 compared to FA. In the peribronchiolar vessels, there was an increase in ET-Ar and ET-Br expression following BD600 compared to IA; and there was a reduction in the iNOs expression for BD1200 and the VCAM-1 for D1200 compared to FA. In the bronchial epithelium, there was an increase in ETAr at BD600, ET-Br at two doses (600 and 1200 mu g/m(3)) of DE and BD, iNOs at D600 and VCAM-1 at BD1200 and D600; all groups were compared to the FA group. Acute exposure to DE and BD derived from sewage methyl esters triggered pulmonary and cardiovascular inflammatory alterations in mice.
  • conferenceObject
    The effects of concentrated air pollution by gender: Experimental study in mice
    (2014) YOSHIZAKI, Kelly; FUZIWARA, Cesar S.; BRITO, Jose Mara; SANTOS, Thais M. N.; KIMURA, Edna T.; CORREIA, Aristides T.; VASCONCELOS, Perola; SILVA, Luiz F. F.; MAUAD, Thais; SALDIVA, Paulo H. N.; MACCHIONE, Mariangela
  • article 14 Citação(ões) na Scopus
    Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles
    (2019) SANTANA, Fernanda P. R.; PINHEIRO, Nathalia M.; BITTENCOURT-MERNAK, Marcia I.; PERINI, Adenir; YOSHIZAKI, Kelly; MACCHIONE, Mariangela; SALDIVA, Paulo H. N.; MARTINS, Milton A.; TIBERIO, Iolanda F. L. C.; PRADO, Marco Antonio M.; PRADO, Vania F.; PRADO, Carla M.
    Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-alpha, and NF-kappa B in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-alpha were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.
  • article 17 Citação(ões) na Scopus
    The effects of urban particulate matter on the nasal epithelium by gender: An experimental study in mice
    (2016) YOSHIZAKI, K.; FUZIWARA, C. S.; BRITO, J. M.; SANTOS, T. M. N.; KIMURA, E. T.; CORREIA, A. T.; AMATO-LOURENCO, L. F.; VASCONCELLOS, P.; SILVA, L. F.; BRENTANI, M. M.; MAUAD, T.; SALDIVA, P. H. N.; MACCHIONE, M.
    Nose is the first portion of the respiratory system into contact with air pollution particles, including organic compounds that could act as endocrine releasers. The objective was to identify and quantify estrogenic receptor-beta (ER beta), aryl hydrocarbon receptor (AhR), the cytochrome P450 enzymes CYP1A1, 1A2, 1B1, and mucus profile in the nasal epithelium of mice. BALB/c mice male (n = 32) and female (n = 82) in proestrus, estrus and diestrus were divided into two groups: 1) exposed to ambient air; 2) concentrated ambient particles (CAPs) to achieve an accumulated dose (concentration vs. time product) of 600 mu g/m(3), the time of the exposure was controlled to ensure the same concentration for all groups (5 days per week for 40-51 days). RT-PCR (Er beta-1, Er beta-2, Ahr, Cyp1a1, Cyp1a2, Cyp1b1), immunohistochemistry and morphometry (ER(3, AhR) were used to analyze. The mucus profiles were examined using acid (Aldan Blue) and neutral (periodic acid Schiff's) stains. Exposed females had significantly lower levels of Er beta-2 mRNA than exposed males (p = 0.036). Cyp1b1 mRNA in diestrus females was significantly lower in the CAP-exposed group compared with the ambient air group (p <= 0.05). ER beta expression in the epithelium and submucosa nucleus was lower in estrus exposed to CAPs compared with ambient air. CAPs increases AhR in the epithelium (p = 0.044) and submucosa (p = 0.001) nucleus of female when compared with male mice. Exposure to CAPs, also led to relatively increased acidic content in the mucus of males (p = 0.048), but decreased acidic content in that of females (p = 0.04). This study revealed sex dependent responses to air pollution in the nasal epithelium that may partially explain the predisposition of females to airway respiratory diseases.
  • article 22 Citação(ões) na Scopus
    Chronic exposure of diesel exhaust particles induces alveolar enlargement in mice
    (2015) YOSHIZAKI, Kelly; BRITO, Jose Mara; MORIYA, Henrique T.; TOLEDO, Alessandra C.; FERZILAN, Sandra; OLIVEIRA, Ana Paula Ligeiro de; MACHADO, Isabel D.; FARSKY, Sandra H. P.; SILVA, Luiz F. F.; MARTINS, Milton A.; SALDIVA, Paulo H. N.; MAUAD, Thais; MACCHIONE, Mariangela
    Background: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. Methods: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 mu g/m(3)). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 mu g/10 mu L of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-gamma) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). Results: DEP decreased IFN-gamma levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p <= 0.001) and CD8+ T cells (p <= 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p <= 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. Conclusion: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.
  • article 36 Citação(ões) na Scopus
    Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles
    (2020) FRIAS, Daniela Perroni; GOMES, Raquel Labiapari Nunes; YOSHIZAKI, Kelly; CARVALHO-OLIVEIRA, Regiani; MATSUDA, Monique; JUNQUEIRA, Mara de Souza; TEODORO, Walcy Rosolia; VASCONCELLOS, Perola de Castro; PEREIRA, Daniela Cristina de Almeida; CONCEICAO, Paulo Roberto da; SALDIVA, Paulo Hilario Nascimento; MAUAD, Thais; MACCHIONE, Mariangela
    Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 mu g/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.