TATIANE KATSUE FURUYA

(Fonte: Lattes)
Índice h a partir de 2011
10
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Radiologia, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 0 Citação(ões) na Scopus
    deltaXpress (ΔXpress): a tool for mapping differentially correlated genes using single-cell qPCR data
    (2023) CARRASCO, Alexis German Murillo; FURUYA, Tatiane Katsue; UNO, Miyuki; JR, Tharcisio Citrangulo Tortelli; CHAMMAS, Roger
    BackgroundHigh-throughput experiments provide deep insight into the molecular biology of different species, but more tools need to be developed to handle this type of data. At the transcriptomics level, quantitative Polymerase Chain Reaction technology (qPCR) can be affordably adapted to produce high-throughput results through a single-cell approach. In addition to comparative expression profiles between groups, single-cell approaches allow us to evaluate and propose new dependency relationships among markers. However, this alternative has not been explored before for large-scale qPCR-based experiments.ResultsHerein, we present deltaXpress (Delta Xpress), a web app for analyzing data from single-cell qPCR experiments using a combination of HTML and R programming languages in a friendly environment. This application uses cycle threshold (Ct) values and categorical information for each sample as input, allowing the best pair of housekeeping genes to be chosen to normalize the expression of target genes. Delta Xpress emulates a bulk analysis by observing differentially expressed genes, but in addition, it allows the discovery of pairwise genes differentially correlated when comparing two experimental conditions. Researchers can download normalized data or use subsequent modules to map differentially correlated genes, perform conventional comparisons between experimental groups, obtain additional information about their genes (gene glossary), and generate ready-to-publication images (600 dots per inch).Conclusions Delta Xpress web app is freely available to non-commercial users at https://alexismurillo.shinyapps.io/dXpress/ and can be used for different experiments in all technologies involving qPCR with at least one housekeeping region.
  • article 1 Citação(ões) na Scopus
    Allergic sensitization and exposure to ambient air pollution beginning early in life lead to a COPD-like phenotype in young adult mice
    (2022) COSTA, Natalia de Souza Xavier; TELES, Aila Mirtes; BRITO, Jose Mara de; LOPES, Thais de Barros Mendes; ROSSI, Renata Calciolari; MAGALHAES, Fernanda; COSTA, Arantes; SARAIVA-ROMANHOLO, Beatriz Mangueira; PERINI, Adenir; FURUYA, Tatiane Katsue; CARRASCO, Alexis German Murillo; VERAS, Mariana Matera; SALDIVA, Paulo Hilaroi Nascimento; CHAMMAS, Roger; MAUAD, Thais
    The perinatal period and early infancy are considered critical periods for lung development. During this period, adversities such as environmental exposures, allergic sensitization, and asthma are believed to impact lung health in adulthood. Therefore, we hypothesized that concomitant exposure to allergic sensitization and urban -derived fine particulate matter (PM2.5) in the early postnatal period of mice would cause more profound alter-ations in lung alveolarization and growth and differently modulate lung inflammation and gene expression than either insult alone in adult life. BALB/c mice were sensitized with ovalbumin (OVA) and exposed to PM2.5 from the fifth day of life. Then, we assessed lung responsiveness, inflammation in BALF, lung tissue, and alveolari-zation by stereology. In addition, we performed a transcriptomic analysis of lung tissue on the 40th day of life. Our results showed that young adult mice submitted to allergic sensitization and exposure to ambient PM2.5 since early life presented decreased lung growth with impaired alveolarization, a mixed neutrophilic-eosinophilic pattern of lung inflammation, increased airway responsiveness, and increased expression of genes linked to neutrophil recruitment when compared to animals that were OVA-sensitized or PM(2.5 )exposed only. Both, early life allergic sensitization and PM2.5 exposure, induced inflammation and impaired lung growth, but concomitant exposure was associated with worsened inflammation parameters and caused alveolar enlargement. Our experimental data provide pathological support for the hypothesis that allergic or environmental insults in early life have permanent adverse consequences for lung growth. In addition, combined insults were associated with the development of a COPD-like phenotype in young adult mice. Together with our data, current evidence points to the urgent need for healthier environments with fewer childhood disadvantage factors during the critical windows of lung development and growth.
  • article 6 Citação(ões) na Scopus
    Disruption of miRNA-mRNA Networks Defines Novel Molecular Signatures for Penile Carcinogenesis
    (2021) FURUYA, Tatiane Katsue; MURTA, Claudio Bovolenta; CARRASCO, Alexis German Murillo; UNO, Miyuki; SICHERO, Laura; VILLA, Luisa Lina; CARDILLI, Leonardo; COELHO, Rafael Ferreira; GUGLIELMETTI, Giuliano Betoni; CORDEIRO, Mauricio Dener; LEITE, Katia Ramos Moreira; NAHAS, William Carlos; CHAMMAS, Roger; JR, Jose Pontes
    Simple Summary: As there are still no biomarkers reported in clinical practice in penile cancer (PeC), we aimed to investigate and validate molecular signatures based on miRNA and mRNA profiles to identify molecular drivers and pathways involved in PeC tumorigenesis. We found eight DEmiRs and 37 DEGs comparing tumoral tissues (TT) paired with non-neoplastic tissues (NNT) of PeC patients. Four downregulated DEmiRs (miR-30a-5p, miR-432-5p, miR-487b-3p, and miR-145-5p) and six upregulated DEGs (IL1A, MCM2, MMP1, MMP12, SFN and VEGFA) were identified as potential biomarkers in PeC by their capacity of discriminating TT and NNT with accuracy. Furthermore, we performed an analysis of miRNA-mRNA interaction and found disruption in the dynamics of the regulation of eight pairs during tumor development that have never been described in PeC. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis. Penile cancer (PeC) carcinogenesis is not fully understood, and no biomarkers are reported in clinical practice. We aimed to investigate molecular signatures based on miRNA and mRNA and perform an integrative analysis to identify molecular drivers and pathways for PeC development. Affymetrix miRNA microarray was used to identify differentially expressed miRNAs (DEmiRs) comparing 11 tumoral tissues (TT) paired with non-neoplastic tissues (NNT) with further validation in an independent cohort (n = 13). We also investigated the mRNA expression of 83 genes in the total sample. Experimentally validated targets of DEmiRs, miRNA-mRNA networks, and enriched pathways were evaluated in silico. Eight out of 69 DEmiRs identified by microarray analysis were validated by qRT-PCR (miR-145-5p, miR-432-5p, miR-487b-3p, miR-30a-5p, miR-200a-5p, miR-224-5p, miR-31-3p and miR-31-5p). Furthermore, 37 differentially expressed genes (DEGs) were identified when comparing TT and NNT. We identified four downregulated DEmiRs (miR-30a-5p, miR-432-5p, miR-487b-3p, and miR-145-5p) and six upregulated DEGs (IL1A, MCM2, MMP1, MMP12, SFN and VEGFA) as potential biomarkers in PeC by their capacity of discriminating TT and NNT with accuracy. The integration analysis showed eight dysregulated miRNA-mRNA pairs in penile carcinogenesis. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis.
  • article 16 Citação(ões) na Scopus
    Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells
    (2021) SAITO, Renata F.; RANGEL, Maria Cristina; HALMAN, Justin R.; CHANDLER, Morgan; ANDRADE, Luciana Nogueira de Sousa; ODETE-BUSTOS, Silvina; FURUYA, Tatiane Katsue; CARRASCO, Alexis German Murillo; CHAVES-FILHO, Adriano B.; YOSHINAGA, Marcos Y.; MIYAMOTO, Sayuri; AFONIN, Kirill A.; CHAMMAS, Roger
    Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.