FERNANDA BUENO FUSCO

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
LIM/10 - Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 23 Citação(ões) na Scopus
    N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1
    (2014) MACHADO, Juliana T.; IBORRA, Rodrigo T.; FUSCO, Fernanda B.; CASTILHO, Gabriela; PINTO, Raphael S.; MACHADO-LIMA, Adriana; NAKANDAKARE, Edna R.; SEGURO, Antonio C.; SHIMIZU, Maria H.; CATANOZI, Sergio; PASSARELLI, Marisa
    In chronic kidney disease (CKD) nontraditional risk factors, such as oxidative stress and advanced glycation end products (AGE) contribute to cardiovascular disease. Particularly, disturbances in reverse cholesterol transport favor the development of atherosclerosis. We analyzed the influence of N-acetylcysteine (NAC) in CKD rats on plasma concentration of lipid peroxides (TBARS) and AGE and on the impact of serum albumin in the development of macrophage endoplasmic reticulum stress (ERS) and cholesterol efflux, namely apo A-I and HDL2-mediated cholesterol removal and ABCA-1 and ABCG-1 protein level. CKD was induced by 5/6 nephrectomy in 2-month old male Wistar rats. Controls (Sham) were false operated. Animals were treated or not with NAC (600 mg/L of water). After 60 days serum albumin was isolated by FPLC and purified by alcoholic extraction. J774 macrophages were incubated with serum albumin (1 mg/mL; 18 h) from all groups, and the expression of ERS markers (protein disulfide isomerase - PDI, Grp78 and Grp94), ABCA-1 and ABCG-1 determined by immunoblot. HDL2 or apo A-I were used for cholesterol efflux assays. Protein and lipid composition of total HDL from Sham and CKD was determined and these particles tested on their abilities to accept cell cholesterol. Comparisons were done by one-way ANOVA and Newman Keuls post test. After 60 days of CKD, body weight was 10% lower in CKD compared to Sham (p < 0.01). This was prevented by NAC. Urea, creatinine, total cholesterol (TC), triglycerides (TG) (mg/dL), proteinuria (mg/24 h) (Sham, n = 31; Sham + NAC, n = 20; CKD, n = 74; CKD + NAC, n = 32), total AGE and pentosidine (n = 8; fluorescence arbitrary unit) and TBARS (n = 7; nmoL/mL) were higher in CKD (122 +/- 8; 0.9 +/- 0.07; 151 +/- 6; 83 +/- 4; 46 +/- 2.5; 32,620 +/- 673; 16,700 +/- 1,370; 6.6 +/- 0.5, respectively) and in CKD + NAC (91.4 +/- 5; 0.6 +/- 0.02; 126 +/- 7.5; 73 +/- 6; 51 +/- 3.5; 24,720 +/- 1,114; 10,080 +/- 748; 4.5 +/- 0.5, respectively) in comparison to Sham (41 +/- 0.9; 0.4 +/- 0.03; 76 +/- 2.7; 51.5 +/- 3; 14 +/- 0.9; 21,750 +/- 960; 5,314 +/- 129; 2.0 +/- 0.2, respectively; p < 0.001) and Sham + NAC (40 +/- 0.9; 0.3 +/- 0.02; 76 +/- 2.6; 68 +/- 4; 18.4 +/- 1.5; 20,040 +/- 700; 5,050 +/- 267; 1.8 +/- 0.2, respectively; p < 0.001). TC, urea, creatinine, total AGE, pentosidine and TBARS were respectively, 17%, 25%, 33%, 24%, 40% and 28% (p < 0.01) lower in CKD + NAC, than in CKD. Glycemia was higher in Sham + NAC (107 +/- 4.6) and CKD + NAC (107 +/- 2.6) than in Sham (96 +/- 1.8; p < 0.05) and CKD (98 +/- 1.6; p < 0.01), respectively. In macrophages (n = 6), CKD albumin increased PDI (3 and 6 times, p < 0.01) and Grp94 (66% and 80%, p < 0.01) in comparison to Sham and CKD + NAC-albumin treated cells, respectively. ABCA-1 expression was lower (87% and 70%, p < 0.001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin; ABCG-1 was higher (4 and 7 times, p < 0.001) in macrophages treated with Sham + NAC and CKD + NAC albumin, respectively in comparison to Sham and CKD albumin. Apo A-I mediated cholesterol efflux was lower (59% and 70%, p < 0.0001) in macrophage treated with Sham + NAC and CKD albumin respectively in comparison to Sham albumin, however, the HDL2 mediated cholesterol efflux was higher (54% and 25%, p < 0. 0001) in macrophage treated with Sham + NAC albumin, in comparison to Sham and CKD + NAC albumin, respectively. CKD-HDL was enriched in total protein and lipids compared to Sham-HDL but preserved its capacity to remove cholesterol from macrophages. NAC reduces plasma lipid peroxidation and AGE and abrogates ERS induced by CKD-albumin. Despite diminishing ABCA-1, NAC increases ABCG-1 that counteracts the reduction in apo A-I-mediated cholesterol efflux. NAC may contribute to attenuate the deleterious effects of CKD-albumin on lipid accumulation in macrophages helping to prevent atherogenesis in CKD.
  • article 16 Citação(ões) na Scopus
    Glycated albumin induces lipid infiltration in mice aorta independently of DM and RAS local modulation by inducing lipid peroxidation and inflammation
    (2016) GOMES, Diego Juvenal; VELOSA, Ana Paula; OKUDA, Ligia Shimabukuro; FUSCO, Fernanda Bueno; SILVA, Karolinne Santana da; PINTO, Paula Ramos; NAKANDAKARE, Edna Regina; CORREA-GIANNELLA, Maria Lucia; WOODS, Tom; BRIMBLE, Margaret Anne; PICKFORD, Russell; RYE, Kerry-Anne; TEODORO, Walcy Rosolia; CATANOZI, Sergio; PASSARELLI, Marisa
    Aims: Advanced glycated albumin (AGE-albumin) adversely impairs macrophage lipid homeostasis in vitro, which may be prevented by angiotensin receptor blockers. In vivo studies are inconclusive whether AGE-albumin itself plays important role in early-stage atherogenesis. We aimed at investigating how AGE-albumin by itself drives atherosclerosis development in dyslipidemic non-diabetic mice and if its effects are due to the activation of renin-angiotensin system in the arterial wall and the expression of genes and proteins involved in lipid flux. Methods and results: Murine albumin glycation was induced by incubation with 10 mM glycolaldehyde and C-albumin with PBS alone. Twelve-week-old-male apoE knockout mice were submitted to a daily IP injection of control (C) or AGE-albumin (2 mg/mL) during 30 days with or without losartan (LOS: 100 mg/L; C + LOS and AGE + LOS). Aortic arch was removed, and gene expression was determined by RT-PCR and protein content by immunofluorescence. Plasma lipid and glucose levels were similar among groups. Systolic blood pressure was similarly reduced in both groups treated with LOS. In comparison to C-albumin, aortic lipid infiltration was 5.3 times increased by AGE-albumin, which was avoided by LOS. LOS prevented the enhancement induced by AGE-albumin in Ager, Tnf and Cybb mRNA levels but did not reduce Olrl. Nfkb and Agt mRNA levels were unchanged by AGE-albumin. LOS similarly reduced Agtri a mRNA level in both C and AGE-albumin groups. In AGE-albumin-treated mice, immunofluorescence for carboxymethyl-lysine, 4-hydroxynonenal and RAGE was respectively, 4.8, 2.6 and 1.7 times enhanced in comparison to C-albumin. These increases were all avoided by LOS. Conclusions: AGE-albumin evokes a pre-stage of atherogenesis in dyslipidemic mice independently of the presence of diabetes mellitus or modulation in the RAS in part by the induction of lipid peroxidation and inflammation.