ARISTIDES TADEU CORREIA

(Fonte: Lattes)
Índice h a partir de 2011
9
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/61 - Laboratório de Pesquisa em Cirurgia Torácica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 1 Citação(ões) na Scopus
    Increased bone resorption by long-term cigarette smoke exposure in animal model
    (2021) JUNQUEIRA, Jader Joel Machado; LOURENCO, Juliana Dias; SILVA, Kaique Rodrigues da; JORGETTI, Vanda; VIEIRA, Rodolfo P.; ARAUJO, Amanda Aparecida de; ANGELIS, Katia De; CORREIA, Aristides Tadeu; ALVES, Luan Henrique Vasconcelos; TIBERIO, Iolanda de Fatima Lopes Calvo; BARBOSA, Alexandre Povoa; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos
    Introduction: Clinical and experimental studies have been attesting the deleterious effects of smoking mainly due to the stimulation of osteoclastogenesis and inhibition of osteoblastogenesis. However the physiological mechanisms that can explain these changes are not fully understood. Aims: To evaluate the trabecular bone resorption effect caused by long-term exposure to cigarette smoke and the action of cytokines and reactive oxygen species involved in this process. Methods: Sixty young adult C57BL/6 mice were allocated to two groups: control, 30 animals exposed to filtered air for 1, 3 and 6 months; and smoke, 30 animals exposed to cigarette smoke for 1, 3 and 6 months. Femoral and tibial extraction was performed to evaluate the bone mineral matrix, bone cytokines (Receptor activator of nuclear factor-kappa B ligand -RANKL and Osteoprotegerin -OPG) and oxidative stress markers (Thiobarbituric acid reactive substances -Tbars). Results: Exposure to cigarette smoke (CS) generated changes in bone structural parameters in the 6th month of follow-up, demonstrating an evident bone loss; reduction in OPG/RANKL ratio from the 3rd month on and increase in Tbars in the first month, both closely related to the increase in osteoclastogenic activity and bone resorption. Conclusion: These findings reinforce the importance of CS-induced oxidative stress in bone compromising the bone cellular activities with a consequent impairment in bone turn over and changes in bone structure.
  • article 1 Citação(ões) na Scopus
    Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor's lungs after hypovolemic shock
    (2021) DIAS, Vinicius Luderer; BRAGA, Karina Andrighetti de Oliveira; NEPOMUCENO, Natalia Aparecida; RUIZ, Liliane Moreira; PEREZ, Juan David Ruiz; CORREIA, Aristides Tadeu; CAIRES JUNIOR, Luiz Carlos de; GOULART, Ernesto; ZATZ, Mayana; PEGO-FERNANDES, Paulo Manuel
    Objective: The shortage of viable lungs is still a major obstacle for transplantation. Trauma victims who represent potential lung donors commonly present hypovolemic shock leading to pulmonary inflammation and deterioration and rejection after transplantation. Seeking to improve lung graft, new approaches to donor treatment have been tested. This study focuses on treatment with mesenchymal stem cells (MSCs) or soluble factors produced by MSCs (FS-MSC) using a rat model for lung donors after hemorrhagic shock. Methods: Forty-eight rats were divided into four groups: Sham (n=12), animals without induction of hypovolemic shock; Shock (n=12), animals submitted to hypovolemic shock (mean arterial pressure 40 mmHg); MSC (n=12), animals submitted to hypovolemic shock and treated with MSCs, and FS (n=12), animals submitted to hypovolemic shock and treated with FS- MSC. The animals were subjected to a 50-minute hypovolemic shock (40 mmHg) procedure. The treated animals were monitored for 115 minutes. We performed histopathology of lung tissue and quantification of inflammatory markers (TNF-alpha, IL-1 beta, IL-6, IL-10, iCAM and vCAM) in lung tissue and peripheral blood leukocytes (PBLs). Results: Hemorrhagic shock resulted in higher PBLs and neutrophil infiltrate in the lungs. FS animals had lower neutrophil density comparing with Shock and MSC animals (p<0.001). No differences in the cytokine levels in lung tissue were observed between the groups. Conclusions: The lungs of rats submitted to hemorrhagic shock and treated with FS-MSC showed reduced inflammation indicated in a decrease in lung neutrophil infiltrate.
  • conferenceObject
    Biomechanical Properties of the Porcine Trachea before and after Decellularization for Airway Transplantation
    (2021) GUIMARAES, A. B.; CORREA, A. T.; PEGO-FERNANDES, P. M.; MAIZATO, M. J.; CESTARI, I. A.; CARDOSO, P. F.