Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor's lungs after hypovolemic shock

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SOC BRASILEIRA PNEUMOLOGIA TISIOLOGIA
Citação
JORNAL BRASILEIRO DE PNEUMOLOGIA, v.47, n.4, article ID e20200452, 8p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: The shortage of viable lungs is still a major obstacle for transplantation. Trauma victims who represent potential lung donors commonly present hypovolemic shock leading to pulmonary inflammation and deterioration and rejection after transplantation. Seeking to improve lung graft, new approaches to donor treatment have been tested. This study focuses on treatment with mesenchymal stem cells (MSCs) or soluble factors produced by MSCs (FS-MSC) using a rat model for lung donors after hemorrhagic shock. Methods: Forty-eight rats were divided into four groups: Sham (n=12), animals without induction of hypovolemic shock; Shock (n=12), animals submitted to hypovolemic shock (mean arterial pressure 40 mmHg); MSC (n=12), animals submitted to hypovolemic shock and treated with MSCs, and FS (n=12), animals submitted to hypovolemic shock and treated with FS- MSC. The animals were subjected to a 50-minute hypovolemic shock (40 mmHg) procedure. The treated animals were monitored for 115 minutes. We performed histopathology of lung tissue and quantification of inflammatory markers (TNF-alpha, IL-1 beta, IL-6, IL-10, iCAM and vCAM) in lung tissue and peripheral blood leukocytes (PBLs). Results: Hemorrhagic shock resulted in higher PBLs and neutrophil infiltrate in the lungs. FS animals had lower neutrophil density comparing with Shock and MSC animals (p<0.001). No differences in the cytokine levels in lung tissue were observed between the groups. Conclusions: The lungs of rats submitted to hemorrhagic shock and treated with FS-MSC showed reduced inflammation indicated in a decrease in lung neutrophil infiltrate.
Palavras-chave
Lung transplantation, Tissue donors, Hypovolemic shock, Mesenchymal cells, Inflammation
Referências
  1. Assoni AF, 2016, WORKING STEM CELLS, P37, DOI [10.1007/978-3-319-30582-0_3, DOI 10.1007/978-3-319-30582-0_3]
  2. Assoni A, 2017, STEM CELLS DEV, V26, P206, DOI 10.1089/scd.2016.0218
  3. Bernardo ME, 2013, CELL STEM CELL, V13, P392, DOI 10.1016/j.stem.2013.09.006
  4. Cardenes N, 2019, BMJ OPEN RESPIR RES, V6, DOI 10.1136/bmjresp-2018-000308
  5. Chambers DC, 2017, STEM CELL TRANSL MED, V6, P1152, DOI 10.1002/sctm.16-0372
  6. Chimenti L, 2012, EUR RESPIR J, V40, P939, DOI 10.1183/09031936.00153211
  7. Cypel M, 2011, CLIN CHEST MED, V32, P233, DOI 10.1016/j.ccm.2011.02.003
  8. Del Sorbo L, 2014, MINERVA ANESTESIOL, V80, P942
  9. Eggenhofer E, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00297
  10. Elhami E, 2013, EJNMMI RES, V3, DOI 10.1186/2191-219X-3-72
  11. Elhami E, 2011, EUR J NUCL MED MOL I, V38, P1323, DOI 10.1007/s00259-011-1753-9
  12. Geiger S, 2017, EUR RESPIR REV, V26, DOI 10.1183/16000617.0044-2017
  13. Gore AV, 2016, SURGERY, V159, P1430, DOI 10.1016/j.surg.2015.12.006
  14. Gupta N, 2007, J IMMUNOL, V179, P1855, DOI 10.4049/jimmunol.179.3.1855
  15. Hirano Elcio Shiyoiti, 2003, Acta Cir. Bras., V18, P465, DOI 10.1590/S0102-86502003000500013
  16. Horie Shahd, 2016, F1000Res, V5, DOI 10.12688/f1000research.8217.1
  17. Huang ZW, 2017, YONSEI MED J, V58, P206, DOI 10.3349/ymj.2017.58.1.206
  18. Ionescu L, 2012, AM J PHYSIOL-LUNG C, V303, pL967, DOI 10.1152/ajplung.00144.2011
  19. Keller CA, 2018, STEM CELL TRANSL MED, V7, P161, DOI 10.1002/sctm.17-0198
  20. LeBlanc K, 2008, LANCET, V371, P1579, DOI 10.1016/S0140-6736(08)60690-X
  21. Lee CY, 2016, STEM CELL RES THER, V7, DOI 10.1186/s13287-016-0296-1
  22. Lee JW, 2009, P NATL ACAD SCI USA, V106, P16357, DOI 10.1073/pnas.0907996106
  23. Mariani AW, 2012, J BRAS PNEUMOL, V38, P776, DOI 10.1590/S1806-37132012000600015
  24. Martens A, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0603-5
  25. McAuley DF, 2014, AM J PHYSIOL-LUNG C, V306, pL809, DOI 10.1152/ajplung.00358.2013
  26. Mordant P, 2016, J HEART LUNG TRANSPL, V35, P1245, DOI 10.1016/j.healun.2016.04.017
  27. Nepomuceno NA, 2018, J SURG RES, V225, P181, DOI 10.1016/j.jss.2017.12.041
  28. Oliveira Caio Marcio Barros de, 2011, Rev. Bras. Anestesiol., V61, P260, DOI 10.1590/S0034-70942011000200014
  29. Pati S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025171
  30. Pati S, 2011, STEM CELLS DEV, V20, P89, DOI 10.1089/scd.2010.0013
  31. Royer PJ, 2016, TRANSPLANTATION, V100, P1803, DOI 10.1097/TP.0000000000001215
  32. Shi YF, 2010, CELL RES, V20, P510, DOI 10.1038/cr.2010.44
  33. Skogeland U, 2018, RESP CARE, V63, P1535, DOI 10.4187/respcare.06401
  34. Stone ML, 2017, RESP RES, V18, DOI 10.1186/s12931-017-0704-9
  35. Vincenzi R, 2009, AM J SURG, V198, P407, DOI 10.1016/j.amjsurg.2009.01.017
  36. Watanabe T, 2017, SURG TODAY, V47, P425, DOI 10.1007/s00595-016-1391-8
  37. Yusen RD, 2016, J HEART LUNG TRANSPL, V35, P1170, DOI 10.1016/j.healun.2016.09.001
  38. Zhu YG, 2014, STEM CELLS, V32, P116, DOI 10.1002/stem.1504
  39. Zhu YG, 2013, RESPIROLOGY, V18, P744, DOI 10.1111/resp.12093
  40. Zucconi E, 2011, J BIOMED BIOTECHNOL, DOI 10.1155/2011/715251