MELANIA DIRCE OLIVEIRA MARQUES

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina - Médico

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 34 Citação(ões) na Scopus
    Predicting sleep apnea responses to oral appliance therapy using polysomnographic airflow
    (2020) VENA, Daniel; AZARBARZIN, Ali; MARQUES, Melania; BEECK, Sara Op de; VANDERVEKEN, Olivier M.; EDWARDS, Bradley A.; CALIANESE, Nicole; HESS, Lauren B.; RADMAND, Reza; HAMILTON, Garun S.; JOOSTEN, Simon A.; TARANTO-MONTEMURRO, Luigi; KIM, Sang-Wook; VERBRAECKEN, Johan; BRAEM, Marc; WHITE, David P.; SANDS, Scott A.; WELLMAN, Andrew
    Study Objectives: Oral appliance therapy is an increasingly common option for treating obstructive sleep apnea (OSA) in patients who are intolerant to continuous positive airway pressure (CPAP). Clinically applicable tools to identify patients who could respond to oral appliance therapy are limited. Methods: Data from three studies (N = 81) were compiled, which included two sleep study nights, on and off oral appliance treatment. Along with clinical variables, airflow features were computed that included the average drop in airflow during respiratory events (event depth) and flow shape features, which, from previous work, indicates the mechanism of pharyngeal collapse. A model was developed to predict oral appliance treatment response (>50% reduction in apnea-hypopnea index [AHI] from baseline plus a treatment AHI <10 events/h). Model performance was quantified using (1) accuracy and (2) the difference in oral appliance treatment efficacy (percent reduction in AHI) and treatment AHI between predicted responders and nonresponders. Results: In addition to age and body mass index (BMI), event depth and expiratory ""pinching"" (validated to reflect palatal prolapse) were the airflow features selected by the model. Nonresponders had deeper events, ""pinched"" expiratory flow shape (i.e. associated with palatal collapse), were older, and had a higher BMI. Prediction accuracy was 74% and treatment AHI was lower in predicted responders compared to nonresponders by a clinically meaningful margin (8.0 [5.1 to 11.6] vs. 20.0 [12.2 to 29.5] events/h, p < 0.001). Conclusions: A model developed with airflow features calculated from routine polysomnography, combined with age and BMI, identified oral appliance treatment responders from nonresponders. This research represents an important application of phenotyping to identify alternative treatments for personalized OSA management. Statement of Significance Treatment response to oral appliance in patients with obstructive sleep apnea can be predicted at baseline from metrics derived from routine polysomnography.
  • article 112 Citação(ões) na Scopus
    Quantifying the Arousal Threshold Using Polysomnography in Obstructive Sleep Apnea
    (2018) SANDS, Scott A.; TERRILL, Philip I.; EDWARDS, Bradley A.; MONTEMURRO, Luigi Taranto; AZARBARZIN, Ali; MARQUES, Melania; MELO, Camila M. de; LORING, Stephen H.; BUTLER, James P.; WHITE, David P.; WELLMAN, Andrew
    Study Objectives: Precision medicine for obstructive sleep apnea (OSA) requires noninvasive estimates of each patient's pathophysiological ""traits."" Here, we provide the first automated technique to quantify the respiratory arousal threshold-defined as the level of ventilatory drive triggering arousal from sleep-using diagnostic polysomnographic signals in patients with OSA. Methods: Ventilatory drive preceding clinically scored arousals was estimated from polysomnographic studies by fitting a respiratory control model (Terrill et al.) to the pattern of ventilation during spontaneous respiratory events. Conceptually, the magnitude of the airflow signal immediately after arousal onset reveals information on the underlying ventilatory drive that triggered the arousal. Polysomnographic arousal threshold measures were compared with gold standard values taken from esophageal pressure and intraoesophageal diaphragm electromyography recorded simultaneously (N = 29). Comparisons were also made to arousal threshold measures using continuous positive airway pressure (CPAP) dial-downs (N = 28). The validity of using (linearized) nasal pressure rather than pneumotachograph ventilation was also assessed (N = 11). Results: Polysomnographic arousal threshold values were correlated with those measured using esophageal pressure and diaphragm EMG (R = 0.79, p < .0001; R = 0.73, p = .0001), as well as CPAP manipulation (R = 0.73, p < .0001). Arousal threshold estimates were similar using nasal pressure and pneumotachograph ventilation (R = 0.96, p < .0001). Conclusions: The arousal threshold in patients with OSA can be estimated using polysomnographic signals and may enable more personalized therapeutic interventions for patients with a low arousal threshold.
  • article 38 Citação(ões) na Scopus
    Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea
    (2018) MESSINEO, Ludovico; TARANTO-MONTEMURRO, Luigi; AZARBARZIN, Ali; MARQUES, Melania D. Oliveira; CALIANESE, Nicole; WHITE, David P.; WELLMAN, Andrew; SANDS, Scott A.
    Increased ""loop gain"" of the ventilatory control system promotes obstructive sleep apnoea (OSA) in some patients and offers an avenue for more personalized treatment, yet diagnostic tools for directly measuring loop gain in the clinical setting are lacking. Here we test the hypothesis that elevated loop gain during sleep can be recognized using voluntary breath-hold manoeuvres during wakefulness. Twenty individuals (10 OSA, 10 controls) participated in a single overnight study with voluntary breath-holding manoeuvres performed during wakefulness. We assessed (1) maximal breath-hold duration, and (2) the ventilatory response to 20 s breath-holds. For comparison, gold standard loop gain values were obtained during non-rapid eye movement (non-REM) sleep using the ventilatory response to 20 s pulses of hypoxic-hypercapnic gas (6% CO2-14% O-2, mimicking apnoea). Continuous positive airway pressure (CPAP) was used to maintain airway patency during sleep. Additional measurements included gold standard loop gain measurement during wakefulness and steady-state loop gain measurement during sleep using CPAP dial-ups. Higher loop gain during sleep was associated with (1) a shorter maximal breath-hold duration (r(2) = 0.49, P < 0.001), and (2) a larger ventilatory response to 20 s breath-holds during wakefulness (second breath; r(2) = 0.50, P < 0.001); together these factors combine to predict high loop gain (receiver operating characteristic area-under-curve: 92%). Gold standard loop gain values were remarkably similar during wake and non-REM sleep. The results show that elevated loop gain during sleep can be identified using simple breath-holding manoeuvres performed during wakefulness. This may have implications for personalizing OSA treatment.
  • article 10 Citação(ões) na Scopus
    Stable Breathing in Patients With Obstructive Sleep Apnea Is Associated With Increased Effort but Not Lowered Metabolic Rate
    (2017) MELO, Camila M. de; TARANTO-MONTEMURRO, Luigi; BUTLER, James P.; WHITE, David P.; LORING, Stephen H.; AZARBARZIN, Ali; MARQUES, Melania; BERGER, Philip J.; WELLMAN, Andrew; SANDS, Scott A.
    Study objectives: In principle, if metabolic rate were to fall during sleep in a patient with obstructive sleep apnea (OSA), ventilatory requirements could be met without increased respiratory effort thereby favoring stable breathing. Indeed, most patients achieve periods of stable flow-limited breathing without respiratory events for periods during the night for reasons that are unclear. Thus, we tested the hypothesis that in patients with OSA, periods of stable breathing occur when metabolic rate (VO2) declines. Methods: Twelve OSA patients (apnea-hypopnea index > 15 events/h) completed overnight polysomnography including measurements of VO2 (using ventilation and intranasal PO2) and respiratory effort (esophageal pressure). Results: Contrary to our hypothesis, VO2 did not differ between stable and unstable breathing periods in non-REM stage 2 (208 +/- 20 vs. 213 +/- 18 mL/min), despite elevated respiratory effort during stable breathing (26 +/- 2 versus 23 +/- 2 cmH(2)O, p =.03). However, VO2 was lowered during deeper sleep (244 to 179 mL/min from non-REM stages 1 to 3, p =.04) in conjunction with more stable breathing. Further analysis revealed that airflow obstruction curtailed metabolism in both stable and unstable periods, since CPAP increased VO 2 by 14% in both cases (p =.02,.03, respectively). Patients whose VO2 fell most during sleep avoided an increase in PCO2 and respiratory effort. Conclusions: OSA patients typically convert from unstable to stable breathing without lowering metabolic rate. During sleep, OSA patients labor with increased respiratory effort but fail to satisfy metabolic demand even in the absence of overt respiratory events.
  • article 32 Citação(ões) na Scopus
    Structure and severity of pharyngeal obstruction determine oral appliance efficacy in sleep apnoea
    (2019) MARQUES, Melania; GENTA, Pedro R.; AZARBARZIN, Ali; TARANTO-MONTEMURRO, Luigi; MESSINEO, Ludovico; HESS, Lauren B.; DEMKO, Gail; WHITE, David P.; SANDS, Scott A.; WELLMAN, Andrew
    Key points Some patients with obstructive sleep apnoea (OSA) respond well to oral appliance therapy, whereas others do not for reasons that are unclear. In the present study, we used gold-standard measurements to demonstrate that patients with a posteriorly-located tongue (natural sleep endoscopy) exhibit a preferential improvement in collapsibility (lowered critical closing pressure) with oral appliances. We also show that patients with both posteriorly-located tongue and less severe collapsibility (predicted responder phenotype) exhibit greater improvements in severity of obstructive sleep apnoea (i.e. reduction in event frequency by 83%, in contrast to 48% in predicted non-responders). The present study suggests that the structure and severity of pharyngeal obstruction determine the phenotype of sleep apnoea patients who benefit maximally from oral appliance efficacy. center dot center dot center dot center dot A major limitation to the administration of oral appliance therapy for obstructive sleep apnoea (OSA) is that therapeutic responses remain unpredictable. In the present study, we tested the hypotheses that oral appliance therapy (i) reduces pharyngeal collapsibility preferentially in patients with posteriorly-located tongue and (ii) is most efficacious (reduction in apnoea-hypopnea index; AHI) in patients with a posteriorly-located tongue and less-severe baseline pharyngeal collapsibility. Twenty-five OSA patients underwent upper airway endoscopy during natural sleep to assess tongue position (type I: vallecula entirely visible; type II: vallecula obscured; type III: vallecula and glottis obscured), as well as obstruction as a result of other pharyngeal structures (e.g. epiglottis). Additional sleep studies with and without oral appliance were performed to measure collapsibility (critical closing pressure; Pcrit) and assess treatment efficacy. Overall, oral appliance therapy reduced Pcrit by 3.9 +/- 2.4 cmH(2)O (mean +/- SD) and AHI by 69 +/- 19%. Therapy lowered Pcrit by an additional 2.7 +/- 0.9 cmH(2)O in patients with posteriorly-located tongue (types II and III) compared to those without (type I) (P < 0.008). Posteriorly-located tongue (p = 0.03) and lower collapsibility (p = 0.04) at baseline were significant determinants of (greater-than-average) treatment efficacy. Predicted responders (type II and III and Pcrit < 1 cmH(2)O) exhibited a greater reduction in the AHI (83 +/- 9 vs. 48 +/- 8% baseline, P < 0.001) and a lower treatment AHI (9 +/- 6 vs. 32 +/- 15 events h(-1), P < 0.001) than predicted non-responders. The site and severity of pharyngeal collapse combine to determine oral appliance efficacy. Specifically, patients with a posteriorly-located tongue plus less-severe collapsibility are the strongest candidates for oral appliance therapy.