Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea

Carregando...
Imagem de Miniatura
Citações na Scopus
38
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
MESSINEO, Ludovico
TARANTO-MONTEMURRO, Luigi
AZARBARZIN, Ali
CALIANESE, Nicole
WHITE, David P.
WELLMAN, Andrew
SANDS, Scott A.
Citação
JOURNAL OF PHYSIOLOGY-LONDON, v.596, n.17, p.4043-4056, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Increased ""loop gain"" of the ventilatory control system promotes obstructive sleep apnoea (OSA) in some patients and offers an avenue for more personalized treatment, yet diagnostic tools for directly measuring loop gain in the clinical setting are lacking. Here we test the hypothesis that elevated loop gain during sleep can be recognized using voluntary breath-hold manoeuvres during wakefulness. Twenty individuals (10 OSA, 10 controls) participated in a single overnight study with voluntary breath-holding manoeuvres performed during wakefulness. We assessed (1) maximal breath-hold duration, and (2) the ventilatory response to 20 s breath-holds. For comparison, gold standard loop gain values were obtained during non-rapid eye movement (non-REM) sleep using the ventilatory response to 20 s pulses of hypoxic-hypercapnic gas (6% CO2-14% O-2, mimicking apnoea). Continuous positive airway pressure (CPAP) was used to maintain airway patency during sleep. Additional measurements included gold standard loop gain measurement during wakefulness and steady-state loop gain measurement during sleep using CPAP dial-ups. Higher loop gain during sleep was associated with (1) a shorter maximal breath-hold duration (r(2) = 0.49, P < 0.001), and (2) a larger ventilatory response to 20 s breath-holds during wakefulness (second breath; r(2) = 0.50, P < 0.001); together these factors combine to predict high loop gain (receiver operating characteristic area-under-curve: 92%). Gold standard loop gain values were remarkably similar during wake and non-REM sleep. The results show that elevated loop gain during sleep can be identified using simple breath-holding manoeuvres performed during wakefulness. This may have implications for personalizing OSA treatment.
Palavras-chave
OSA alternative treatments, OSA phenotyping, chemoreflex predictors
Referências
  1. Berry RB, 2012, J CLIN SLEEP MED, V8, P597, DOI 10.5664/jcsm.2172
  2. BLAIR E, 1955, J CLIN INVEST, V34, P383, DOI 10.1172/JCI103086
  3. Carroll MS, 2014, J APPL PHYSIOL, V116, P439, DOI 10.1152/japplphysiol.01310.2013
  4. Doff MHJ, 2013, SLEEP, V36, P1289, DOI 10.5665/sleep.2948
  5. DOUGLAS NJ, 1982, AM REV RESPIR DIS, V126, P758
  6. Eckert DJ, 2013, AM J RESP CRIT CARE, V188, P996, DOI 10.1164/rccm.201303-0448OC
  7. Edwards BA, 2016, AM J RESP CRIT CARE, V194, P1413, DOI 10.1164/rccm.201601-0099OC
  8. Edwards BA, 2016, SLEEP, V39, P1973, DOI 10.5665/sleep.6226
  9. Edwards BA, 2014, J PHYSIOL-LONDON, V592, P4523, DOI 10.1113/jphysiol.2014.277210
  10. Edwards BA, 2013, SLEEP, V36, P281, DOI 10.5665/sleep.2390
  11. Edwards BA, 2012, J PHYSIOL-LONDON, V590, P1199, DOI 10.1113/jphysiol.2011.223925
  12. FINDLEY LJ, 1983, J APPL PHYSIOL, V55, P1777
  13. Flemons WW, 1999, SLEEP, V22, P667
  14. Fu YQ, 2017, SLEEP BREATH, V21, P181, DOI 10.1007/s11325-016-1393-1
  15. Furlow B, 2016, LANCET RESP MED, V4, P860, DOI 10.1016/S2213-2600(16)30300-9
  16. Ghazanshahi SD, 1997, IEEE T BIO-MED ENG, V44, P357, DOI 10.1109/10.568911
  17. Giannoni A, 2009, J AM COLL CARDIOL, V53, P1975, DOI 10.1016/j.jacc.2009.02.030
  18. Heinzer RC, 2005, AM J RESP CRIT CARE, V172, P114, DOI 10.1164/rccm.200404-522OC
  19. Hill L, 1908, J PHYSIOL-LONDON, V37, P77
  20. Horner RL, 2001, J PHYSIOL-LONDON, V534, P881, DOI 10.1111/j.1469-7793.2001.00881.x
  21. Hudgel DW, 1998, AM J RESP CRIT CARE, V158, P1142, DOI 10.1164/ajrccm.158.4.9712105
  22. Javaheri S, 1999, NEW ENGL J MED, V341, P949, DOI 10.1056/NEJM199909233411304
  23. Joosten SA, 2017, SLEEP, V40, DOI 10.1093/sleep/zsx094
  24. KELMAN GR, 1971, Q J EXP PHYSIOL CMS, V56, P92, DOI 10.1113/expphysiol.1971.sp002111
  25. Loewen A, 2009, SLEEP, V32, P1355, DOI 10.1093/sleep/32.10.1355
  26. MCCLEAN PA, 1988, J APPL PHYSIOL, V64, P84
  27. Messineo L, 2017, SLEEP BREATH, V21, P861, DOI 10.1007/s11325-017-1485-6
  28. Nikita T, 2017, RESP PHYSIOL NEUROBI, V235, P79, DOI 10.1016/j.resp.2016.10.005
  29. Parkes MJ, 2006, EXP PHYSIOL, V91, P1, DOI 10.1113/expphysiol.2005.031625
  30. SANDS SA, 2017, AM J RESP CRIT CARE, V195
  31. Sands SA, 2017, AM J RESP CRIT CARE, V195, P237, DOI [10.1164/rccm.201604-07610C, 10.1164/rccm.201604-0761OC]
  32. SERIES F, 1989, EUR RESPIR J, V2, P26
  33. SHEA SA, 1993, RESP PHYSIOL, V93, P203, DOI 10.1016/0034-5687(93)90006-V
  34. Solin P, 2000, AM J RESP CRIT CARE, V162, P2194, DOI 10.1164/ajrccm.162.6.2002024
  35. STANLEY NN, 1975, THORAX, V30, P337, DOI 10.1136/thx.30.3.337
  36. Strollo PJ, 2014, NEW ENGL J MED, V370, P139, DOI 10.1056/NEJMoa1308659
  37. Taranto-Montemurro L, 2016, EUR RESPIR J, V48, P1340, DOI 10.1183/13993003.00823-2016
  38. Terrill PI, 2015, EUR RESPIR J, V45, P408, DOI 10.1183/09031936.00062914
  39. Wellman A, 2008, RESP PHYSIOL NEUROBI, V162, P144, DOI 10.1016/j.resp.2008.05.019
  40. Wellman A, 2013, J APPL PHYSIOL, V114, P911, DOI 10.1152/japplphysiol.00747.2012
  41. Wellman A, 2011, J APPL PHYSIOL, V110, P1627, DOI 10.1152/japplphysiol.00972.2010
  42. WHITE DP, 1986, J APPL PHYSIOL, V61, P1279
  43. Xie AL, 2013, J APPL PHYSIOL, V115, P22, DOI 10.1152/japplphysiol.00064.2013
  44. Younes M, 2001, AM J RESP CRIT CARE, V163, P1181, DOI 10.1164/ajrccm.163.5.2007013
  45. Younes M, 2007, J APPL PHYSIOL, V103, P1929, DOI 10.1152/japplphysiol.00561.2007