JOSE WILLEGAIGNON DE AMORIM DE CARVALHO

(Fonte: Lattes)
Índice h a partir de 2011
8
Projetos de Pesquisa
Unidades Organizacionais
LIM/43 - Laboratório de Medicina Nuclear, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 9 de 9
  • article 6 Citação(ões) na Scopus
    Estimating 131I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification
    (2016) WILLEGAIGNON, José; PELISSONI, Rogério Alexandre; LIMA, Beatriz Christine de Godoy Diniz; SAPIENZA, Marcelo Tatit; COURA-FILHO, George Barberio; QUEIROZ, Marcelo Araújo; BUCHPIGUEL, Carlos Alberto
    Abstract Objective: To compare the probe detection method with the image quantification method when estimating 131I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and Methods: Fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of 131I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after 131I administration in order to estimate the effective half-life (Teff) and residence time of 131I in the body. Results: The mean values for Teff and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the Teff (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after 131I administration (p > 0.914). Conclusion: There is full agreement as to the feasibility of using probe detection and image quantification when estimating 131I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is inefficacious in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of 131I to be administered to patients under such therapy, it should be used with caution.
  • article 3 Citação(ões) na Scopus
    Correlação entre volume tireoidiano determinado pelo método de ultrassonografia versus cintilografia e sua implicação em cálculos dosimétricos na terapia com radioiodo na doença de Graves
    (2011) VIEIRA, Lucas de Oliveira; KUBO, Rodrigo; SAPIENZA, Marcelo Tatit; WILLEGAIGNON, Jose; CHAMMAS, Maria Cristina; COURA-FILHO, George Barberio; ONO, Carla Rachel; WATANABE, Tomoco; SADO, Heitor Naoki; BUCHPIGUEL, Carlos Alberto
    Introduction: Graves disease (GD) is the most common cause of hiperthyroidism, and the most common treatment options are surgery, antithyroid drugs and radioiodine therapy. In radiodosimetric calculations to determine radioiodine dosage it is possible to use thyroid volume estimatives based on ultrasound or scintigraphy. Objective: The present study aimed to correlate these methodologies emphasizing volume estimatives and dosimetric implications. Subjects and methods: Were included 103 patients with GD diagnosis and indication of radioiodine treatment. They were submitted to thyroid ultrasound and thyroid scintigraphy. Results and conclusions: Good correlation between both methods was observed, although scintigraphy systematically obtained greater volumes than ultrasound implying in lower estimatives of absorbed dose when scintigraphy is used. Arq Bras Endocrinol Metab. 2011;55(9):696-700
  • article 12 Citação(ões) na Scopus
    Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning
    (2014) WILLEGAIGNON, J.; SAPIENZA, M. T.; COURA-FILHO, G. B.; WATANABE, T.; TRAINO, A. C.; BUCHPIGUEL, C. A.
    Purpose: The precise determination of organ mass (m(th)) and total number of disintegrations within the thyroid gland ((A) over tilde) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose-response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves' disease (GD) treatment planning were calculated using different approaches to estimating the m(th) and the (A) over tilde. Methods: Fifty patients were included in the study. Thyroid I-131 uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T-eff) of I-131 in the thyroid; the thyroid cumulated activity was then estimated using the Teff thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (+/- 1 standard deviation) between m(th) estimated by SCTG and USG was 1.74 (+/- 0.64) and that between (A) over tilde obtained by Teff and the integration of measured activity in the gland was 1.71 (+/- 0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m(th) was measured by either USG or SCTG and (A) over tilde was determined by the integration of measured I-131 activity in the thyroid gland and based on T-eff, respectively. No statistically significant relationship was found between therapeutic response and patients' age, administered I-131 activity (MBq), 24-h thyroid I-131 uptake (%) or T-eff (p >= 0.064); nonetheless, a good relationship was found between the therapeutic response and mth (p >= 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient's m(th) and (A) over tilde. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m(th) and (A) over tilde. (C) 2014 American Association of Physicists in Medicine.
  • article 3 Citação(ões) na Scopus
    Ultrasonography Echotexture as a surrogate for Sialadenitis secondary to I-131 Radioiodine Therapy for differentiated Thyroid Cancer: a review and metaanalysis
    (2020) LIMA, Graziele Aparecida Simoes; LOPEZ, Rossana Veronica Mendoza; OZORIO, Gislaine Aparecida; FREITAS, Ricardo Miguel Costa de; WILLEGAIGNON, Jose; SAPIENZA, Marcelo Tatit; CHAMMAS, Maria Christina; COURA-FILHO, George Barberio
    To systematically review and analyze the medical literature to assess ultrasonography echotexture changes in thyroid cancer patients for the detection of chronic sialadenitis caused by radioiodine therapy. Methods: Sources were retrieved from PubMed, Scopus, EMBASE and LILACS through November 2018. All studies that assessed ultrasonographic features before I-131 administration and at 12 months after I-131 administration were selected. After data extraction, statistical analysis was performed by using Stata software. Results: From a total of 435 studies, 4 studies involving 665 patients were considered eligible, and echotexture heterogeneity was found with a significant difference. Conclusions: Ultrasound echotexture may detect chronic sialadenitis secondary to salivary radioiodine therapy.
  • article 20 Citação(ões) na Scopus
    Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning
    (2019) SAPIENZA, Marcelo Tatit; WILLEGAIGNON, Jose
    The efficacy and toxicity of radionuclide therapy are believed to be directly related to the radiation doses received by target tissues; however, nuclear medicine therapy continues to be based primarily on the administration of empirical activities to patients and less frequently on the use of internal dosimetry for individual therapeutic planning. This review aimed to critically describe the techniques and clinical evidence of dosimetry as a tool for therapeutic planning and the main limitations to its implementation in clinical practice. The present article is a nonsystematic review of voxel-based dosimetry. Clinical evidence pointing to a correlation between the radiation dose and therapeutic response in various diseases, such as thyroid carcinoma, neuroendocrine tumors and prostate cancer, is reviewed. Its limitations include technical aspects related to image acquisition and processing and the lack of randomized clinical trials demonstrating the impact of dosimetry on patient therapy. A more widespread use of dosimetry in therapeutic planning involves the development of user-friendly dosimetric protocols and confirmation that dose estimation implies good efficacy and low treatment-related toxicity.
  • article 1 Citação(ões) na Scopus
    Validation of automated image co-registration integrated into in-house software for voxel-based internal dosimetry on single-photon emission computed tomography images
    (2023) LEITÃO, André Luiz Alberti; FONDA, Uysha de Souza; BUCHPIGUEL, Carlos Alberto; WILLEGAIGNON, José; SAPIENZA, Marcelo Tatit
    Abstract Objective: To develop an automated co-registration system and test its performance, with and without a fiducial marker, on single-photon emission computed tomography (SPECT) images. Materials and Methods: Three SPECT/CT scans were acquired for each rotation of a Jaszczak phantom (to 0°, 5°, and 10° in relation to the bed axis), with and without a fiducial marker. Two rigid co-registration software packages-SPM12 and NMDose-coreg-were employed, and the percent root mean square error (%RMSE) was calculated in order to assess the quality of the co-registrations. Uniformity, contrast, and resolution were measured before and after co-registration. The NMDose-coreg software was employed to calculate the renal doses in 12 patients treated with 177Lu-DOTATATE, and we compared those with the values obtained with the Organ Level INternal Dose Assessment for EXponential Modeling (OLINDA/EXM) software. Results: The use of a fiducial marker had no significant effect on the quality of co-registration on SPECT images, as measured by %RMSE (p = 0.40). After co-registration, uniformity, contrast, and resolution did not differ between the images acquired with fiducial markers and those acquired without. Preliminary clinical application showed mean total processing times of 9 ± 3 min/patient for NMDose-coreg and 64 ± 10 min/patient for OLINDA/EXM, with a strong correlation between the two, despite the lower renal doses obtained with NMDose-coreg. Conclusion: The use of NMDose-coreg allows fast co-registration of SPECT images, with no loss of uniformity, contrast, or resolution. The use of a fiducial marker does not appear to increase the accuracy of co-registration on phantoms.
  • article 1 Citação(ões) na Scopus
    Accuracy in dosimetry of diagnostic agents: impact of the number of source tissues used in whole organ S value-based calculations
    (2020) JOSEFSSON, Anders; SIRITANTIKORN, Klaikangwol; RANKA, Sagar; CARVALHO, Jose Willegaignon de Amorim de; BUCHPIGUEL, Carlos Alberto; SAPIENZA, Marcelo Tatit; BOLCH, Wesley E.; SGOUROS, George
    Background Dosimetry for diagnostic agents is performed to assess the risk of radiation detriment (e.g., cancer) associated with the imaging agent and the risk is assessed by computing the effective dose coefficient, e. Stylized phantoms created by the MIRD Committee and updated by work performed by Cristy-Eckerman (CE) have been the standard in diagnostic dosimetry. Recently, the ICRP developed voxelized phantoms, which are described in ICRP Publication 110. These voxelized phantoms are more realistic and detailed in describing human anatomy compared with the CE stylized phantoms. Ideally, all tissues should be represented and their pharmacokinetics collected for an as accurate a dosimetric calculation as possible. As the number of source tissues included increases, the calculated e becomes more accurate. There is, however, a trade-off between the number of source tissues considered, and the time and effort required to measure the time-activity curve for each tissue needed for the calculations. In this study, we used a previously published Ga-68-DOTA-TATE data set to examine how the number of source tissues included for both the ICRP voxelized and CE stylized phantoms affected e. Results Depending upon the number of source tissues included e varied between 14.0-23.5 mu Sv/MBq for the ICRP voxelized and 12.4-27.7 mu Sv/MBq for the CE stylized phantoms. Furthermore, stability in e, defined as a < 10% difference between e obtained using all source tissues compared to one using fewer source tissues, was obtained after including 5 (36%) of the 14 source tissues for the ICRP voxelized, and after including 3 (25%) of the 12 source tissues for the CE stylized phantoms. In addition, a 2-fold increase in e was obtained when all source tissues where included in the calculation compared to when the TIAC distribution was lumped into a single reminder-of-body source term. Conclusions This study shows the importance of including the larger tissues like the muscles and remainder-of-body in the dosimetric calculations. The range of e based on the included tissues were less for the ICRP voxelized phantoms using tissue weighting factors from ICRP Publication 103 compared to CE stylized phantoms using tissue weighting factors from ICRP Publication 60.
  • article 2 Citação(ões) na Scopus
    Radiation safety measures in diagnostic nuclear medicine, based on the potential radiation dose emitted by radioactive patients
    (2023) WILLEGAIGNON, José; FERNANDES, Samantha Cristina Pereira; PELISSONI, Rogério Alexandre; COURA-FILHO, George Barbério; SAPIENZA, Marcelo Tatit; BUCHPIGUEL, Carlos Alberto
    Abstract Objective: To measure the potential radiation dose emitted by patients who have recently undergone diagnostic nuclear medicine procedures, in order to establish optimal radiation safety measures for such procedures. Materials and Methods: We evaluated the radiation doses emitted by 175 adult patients in whom technetium-99m, iodine-131, and fluorine-18 radionuclides were administered for bone, kidney, heart, brain, and whole-body scans, as measured with a radiation detector. Those values served as the basis for evaluating whole-body radiopharmaceutical clearance, as well as the risk for the exposure of others to radiation, depending on the time elapsed since administration of the radiopharmaceutical. Results: The mean time to clearance of the radiopharmaceuticals administered, expressed as the effective half-life, ranged from 1.18 ± 0.30 h to 11.41 ± 0.02 h, and the mean maximum cumulative radiation dose at 1.0 m from the patients was 149.74 ± 56.72 µSv. Even at a distance of 0.5 m, the cumulative dose was found to be only half and one tenth of the limits established for exposure of the general public and family members/caregivers (1.0 mSv and 5.0 mSv per episode, respectively). Conclusion: Cumulative radiation doses emitted by patients immediately after diagnostic nuclear medicine procedures are considerably lower than the limits established by the International Commission on Radiological Protection and the International Atomic Energy Agency, and precautionary measures to avoid radiation exposure are therefore not required after such procedures.
  • article 2 Citação(ões) na Scopus
    Dose calibrator linearity test: 99mTc versus 18F radioisotopes
    (2015) WILLEGAIGNON, José; SAPIENZA, Marcelo Tatit; COURA-FILHO, George Barberio; GARCEZ, Alexandre Teles; ALVES, Carlos Eduardo Gonzalez Ribeiro; CARDONA, Marissa Anabel Rivera; GUTTERRES, Ricardo Fraga; BUCHPIGUEL, Carlos Alberto
    Objective: The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods: The test was performed with sources of 99mTc (62 GBq) and 18F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results: Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06), and for the 18F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion: The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service.