RAFAEL PIRES DA SILVA

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
LIM/17 - Laboratório de Investigação em Reumatologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • conferenceObject
    Chronic (24 weeks) Beta-alanine Supplementation Does Not Affect Muscle Taurine Or Blood Clinical Chemistry
    (2018) SAUNDERS, Bryan; FRANCHI, Mariana; OLIVEIRA, Luana F.; PAINELLI, Vitor S.; SILVA, Vinicius E.; SILVA, Rafael P.; COSTA, Luiz A. R.; SALE, Craig; HARRIS, Roger C.; ROSCHEL, Hamilton; ARTIOLI, Guilherme G.; GUALANO, Bruno
  • article 26 Citação(ões) na Scopus
    Effects of -alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise
    (2019) SILVA, Rafael Pires da; OLIVEIRA, Luana Farias de; SAUNDERS, Bryan; KRATZ, Caroline de Andrade; PAINELLI, Vitor de Salles; SILVA, Vinicius da Eira; MARINS, Joao Carlos Bouzas; FRANCHINI, Emerson; GUALANO, Bruno; ARTIOLI, Guilherme Giannini
    The effects of -alanine (BA) and sodium bicarbonate (SB) on energy metabolism during work-matched high-intensity exercise and cycling time-trial performance were examined in 71 male cyclists. They were randomised to receive BA+placebo (BA, n=18), placebo+SB (SB, n=17), BA+SB (BASB, n=19), or placebo+placebo (PLA, n=18). BA was supplemented for 28days (6.4gday(-1)) and SB (0.3gkg(-1)) ingested 60min before exercise on the post-supplementation trial. Dextrose and calcium carbonate were placebos for BA and SB, respectively. Before (PRE) and after (POST) supplementation, participants performed a high-intensity intermittent cycling test (HICT-110%) consisting of four 60-s bouts at 110% of their maximal power output (60-s rest between bouts). The estimated contribution of the energy systems was calculated for each bout in 39 of the participants (BA: n=9; SB: n=10; BASB: n=10, PLA: n=10). Ten minutes after HICT-110%, cycling performance was determined in a 30-kJ time-trial test in all participants. Both groups receiving SB increased estimated glycolytic contribution in the overall HICT-110%, which approached significance (SB: +23%, p=0.068 vs. PRE; BASB: +18%, p=0.059 vs. PRE). No effects of supplementation were observed for the estimated oxidative and ATP-PCr systems. Time to complete 30 kJ was not significantly changed by any of the treatments, although a trend toward significance was shown in the BASB group (p=0.06). We conclude that SB, but not BA, increases the estimated glycolytic contribution to high-intensity intermittent exercise when total work done is controlled and that BA and SB, either alone or in combination, do not improve short-duration cycling time-trial performance.
  • article 13 Citação(ões) na Scopus
    24-Week beta-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males
    (2020) SAUNDERS, Bryan; FRANCHI, Mariana; OLIVEIRA, Luana Farias de; SILVA, Vinicius da Eira; SILVA, Rafael Pires da; PAINELLI, Vitor de Salles; COSTA, Luiz Augusto Riani; SALE, Craig; HARRIS, Roger Charles; ROSCHEL, Hamilton; ARTIOLI, Guilherme Giannini; GUALANO, Bruno
    Purpose To investigate the effects of chronic beta-alanine (BA) supplementation on muscle taurine content, blood clinical markers and sensory side-effects. Methods Twenty-five healthy male participants (age 27 +/- 4 years, height 1.75 +/- 0.09 m, body mass 78.9 +/- 11.7 kg) were supplemented with 6.4 g day(-1) of sustained-release BA (N = 16; CarnoSyn (TM), NAI, USA) or placebo (PL; N = 9; maltodextrin) for 24 weeks. Resting muscle biopsies of the m. vastus lateralis were taken at 0, 12 and 24 weeks and analysed for taurine content (BA, N = 12; PL, N = 6) using high-performance liquid chromatography. Resting venous blood samples were taken every 4 weeks and analysed for markers of renal, hepatic and muscle function (BA, N = 15; PL, N = 8; aspartate transaminase; alanine aminotransferase; alkaline phosphatase; lactate dehydrogenase; albumin; globulin; creatinine; estimated glomerular filtration rate and creatine kinase). Results There was a significant main effect of group (p = 0.04) on muscle taurine, with overall lower values in PL, although there was no main effect of time or interaction effect (both p > 0.05) and no differences between specific timepoints (week 0, BA: 33.67 +/- 8.18 mmol kg(-1) dm, PL: 27.75 +/- 4.86 mmol kg(-1) dm; week 12, BA: 35.93 +/- 8.79 mmol kg(-1) dm, PL: 27.67 +/- 4.75 mmol kg(-1) dm; week 24, BA: 35.42 +/- 6.16 mmol kg(-1) dm, PL: 31.99 +/- 5.60 mmol kg(-1) dm). There was no effect of treatment, time or any interaction effects on any blood marker (all p > 0.05) and no self-reported side-effects in these participants throughout the study. Conclusions The current study showed that 24 weeks of BA supplementation at 6.4 g day(-1) did not significantly affect muscle taurine content, clinical markers of renal, hepatic and muscle function, nor did it result in chronic sensory side-effects, in healthy individuals. Since athletes are likely to engage in chronic supplementation, these data provide important evidence to suggest that supplementation with BA at these doses for up to 24 weeks is safe for healthy individuals.
  • article 37 Citação(ões) na Scopus
    Exercise and beta-alanine supplementation on carnosine-acrolein adduct in skeletal muscle
    (2018) CARVALHO, Victor H.; OLIVEIRA, Ana H. S.; OLIVEIRA, Luana F. de; SILVA, Rafael P. da; MASCIO, Paolo Di; GUALANO, Bruno; ARTIOLI, Guilherme G.; MEDEIROS, Marisa H. G.
    Previous studies have demonstrated that exercise results in reactive aldehyde production and that beta-alanine supplementation increases carnosine content in skeletal muscle. However, little is known about the influence exercise and beta-alanine supplementation have on the formation of carnosine-aldehydes. The goal of the present study was to monitor the formation of carnosine-aldehyde adducts, following high-intensity intermittent exercise, before and after beta-alanine supplementation. Vastus lateralis biopsy samples were taken from 14 cyclists, before and after a 28 day beta-alanine supplementation, following 4 bouts of a 30 s all-out cycling test, and carnosine and CAR-aldehyde adducts [carnosine-acrolein, CAR-ACR (m/z 303), carnosine-4-hydroxy-2-hexenal, CAR-HHE (m/z 341) and carnosine-4-hydroxy-2-nonenal, CAR-HNE (m/z 383)] were quantified by HPLC-MS/MS. beta-alanine supplementation increased muscle carnosine content by similar to 50% (p = 0.0001 vs. Pre-Supplementation). Interestingly, there was a significant increase in post-exercise CAR-ACR content following beta-alanine supplementation (p < 0.001 vs. post-exercise before supplementation), whereas neither exercise alone nor supplementation alone increased CAR-ACR formation. These results suggest that carnosine functions as an acrolein-scavenger in skeletal muscle. Such a role would be relevant to the detoxification of this aldehyde formed during exercise, and appears to be enhanced by beta-alanine supplementation. These novel findings not only have the potential of directly benefiting athletes who engage in intensive training regimens, but will also allow researchers to explore the role of muscle carnosine in detoxifying reactive aldehydes in diseases characterized by abnormal oxidative stress.
  • conferenceObject
    Effect Of 24 Weeks beta-alanine Supplementation On High-intensity Cycling
    (2016) SAUNDERS, Bryan; PAINELLI, Vitor de Salles; SILVA, Vinicius Eira; OLIVEIRA, Luana Farias de; SILVA, Rafael Pires da; SALE, Craig; HARRIS, Roger Charles; ROSCHEL, Hamilton; ARTIOLI, Guilherme Giannini; GUALANO, Bruno