DIEGO ARMANDO CARDONA CARDENAS

Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/65, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 9 de 9
  • conferenceObject
    Automated radiographic bone suppression with deep convolutional neural networks
    (2021) CARDENAS, Diego Armando Cardona; FERREIRA JUNIOR, Jose Raniery; MORENO, Ramon Alfredo; REBELO, Marina de Fatima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Dual-energy subtraction (DES) is a technique that separates soft tissue from bones in a chest radiograph (CR). As DES requires specialized equipment, we propose an automatic method based on convolutional neural networks (CNNs) to generate virtual soft tissue images. A dataset comprising 35 pairs of CR and its soft-tissue version split in training (28 image pairs) and testing (7 image pairs) sets were used with data augmentation. We tested two types of images: the lung region's cropped image and the segmented lung image. The ribs suppression was treated as a local problem, so each image was divided into 784 patches. The U-Net architecture was used to perform bone suppression. We tested two types of loss functions: mean squared error (L-mse) and L-sm, which combines L-mse with the structural similarity index measure (SSIM). Due to the patches overlapping, it was necessary to interpolate the gray levels on the reconstructed image from the predicted patches. Evaluations were based on SSIM and root mean square error (RMSE) over the reconstructed lung area. The combination that presented the best results used the loss L-sm and the segmented lung image as input to the U-Net (SSIM of 0.858 and RMSE of 0.033). We observed that the U-Net has poor performance when trained with cropped images containing all information from the chest cavity and how the loss using local information can improve CR rib bone suppression. Our results suggest that it is possible removing the rib bones accurately in CR using CNN and a patch-based approach.y
  • conferenceObject
    A general fully automated deep-learning method to detect cardiomegaly in chest x-rays
    (2021) FERREIRA-JUNIOR, Jose Raniery; CARDENAS, Diego Armando Cardona; MORENO, Ramon Alfredo; REBELO, Marina de Fdtima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Cardiomegaly is a medical condition that leads to an increase in cardiac size. It can be manually assessed using the cardiothoracic ratio from chest x-rays (CXRs). However, as that task can be challenging in such limited examinations, we propose the fully automated cardiomegaly detection in CXR. For this, we first trained convolutional networks (ConvNets) to classify the CXR as positive or negative to cardiomegaly and then evaluated the generalization potential of the trained ConvNets on independent cohorts. This work used frontal CXR images from a public dataset for training/testing and another public and one private dataset to test the models' generalization externally. Training and testing were performed using images cropped with a previously developed U-Net model. Experiments were performed with five topologically different ConvNets, data augmentation techniques, and a 50-50 class-weighing strategy to improve performance and reduce the possibility of bias to the majority class. The receiver operating characteristic curve assessed the performance of the models. DenseNet yielded the highest area under the curve (AUC) on testing (0.818) and external validation (0.809) datasets. Moreover, DenseNet obtained the highest sensitivity overall, yielding up to 0.971 on the private dataset with patients from our hospital. Therefore, DenseNet had a statistically higher potential to identify cardiomegaly. The proposed models, especially those trained with DenseNet convolutional core, automatically detected cardiomegaly with high sensitivity. To the best of our knowledge, this was the first work to design a novel general model for classifying specific deep-learning patterns of cardiomegaly in CXRs.
  • conferenceObject 0 Citação(ões) na Scopus
    A deep learning approach for COVID-19 screening and localization on Chest X-Ray images
    (2022) MARCOMINI, Karem Daiane; CARDENAS, Diego Armando Cardona; TRAINA, Agma Juci Machado; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Chest X-ray (CXR) images have a high potential in the monitoring and examination of various lung diseases, including COVID-19. However, the screening of a large number of patients with diagnostic hypothesis for COVID-19 poses a major challenge for physicians. In this paper, we propose a deep learning-based approach that can simultaneously suggest a diagnose and localize lung opacity areas in CXR images. We used a public dataset containing 5, 639 posteroanterior CXR images. Due to unbalanced classes (69.2% of the images are COVID-19 positive), data augmentation was applied only to images belonging to the normal category. We split the dataset into train and test sets with proportional rate at 90:10. To the classification task, we applied 5-fold cross-validation to the training set. The EfficientNetB4 architecture was used to perform this classification. We used a YOLOv5 pre-trained in COCO dataset to the detection task. Evaluations were based on accuracy and area under the ROC curve (AUROC) metrics to the classification task and mean average precision (mAP) to the detection task. The classification task achieved an average accuracy of 0.83 +/- 0.01 (95% CI [0.81, 0.84]) and AUC of 0.88 +/- 0.02 (95% CI [0.85, 0.89]) in 5-fold over the test dataset. The best result was reached in fold 3 (0.84 and 0.89 of accuracy and AUC, respectively). Positive results were evaluated by the opacity detector, which achieved a mAP of 59.51%. Thus, the good performance and rapid diagnostic prediction make the system a promising means to assist radiologists in decision making tasks.
  • article 4 Citação(ões) na Scopus
    Chronic lung lesions in COVID-19 survivors: predictive clinical model
    (2022) CARVALHO, Carlos Roberto Ribeiro; CHATE, Rodrigo Caruso; SAWAMURA, Marcio Valente Yamada; GARCIA, Michelle Louvaes; LAMAS, Celina Almeida; CARDENAS, Diego Armando Cardona; LIMA, Daniel Mario; SCUDELLER, Paula Gobi; SALGE, Joao Marcos; NOMURA, Cesar Higa; GUTIERREZ, Marco Antonio
    Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection. Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO(2)), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO(2), FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT. Setting A tertiary hospital in Sao Paulo, Brazil. Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged >= 18 years. Primary outcome measure A predictive clinical model for lung lesion detection on chest CT. Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO(2), FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO(2) and FVC (sensitivity, 0.85 +/- 0.08; specificity, 0.70 +/- 0.06; F1-score, 0.79 +/- 0.06 and area under the curve, 0.80 +/- 0.07). Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae.
  • article 15 Citação(ões) na Scopus
    Novel Chest Radiographic Biomarkers for COVID-19 Using Radiomic Features Associated with Diagnostics and Outcomes
    (2021) FERREIRA JUNIOR, Jose Raniery; CARDENAS, Diego Armando Cardona; MORENO, Ramon Alfredo; REBELO, Marina de Fatima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    COVID-19 is a highly contagious disease that can cause severe pneumonia. Patients with pneumonia undergo chest X-rays (XR) to assess infiltrates that identify the infection. However, the radiographic characteristics of COVID-19 are similar to the other acute respiratory syndromes, hindering the imaging diagnosis. In this work, we proposed identifying quantitative/radiomic biomarkers for COVID-19 to support XR assessment of acute respiratory diseases. This retrospective study used different cohorts of 227 patients diagnosed with pneumonia; 49 of them had COVID-19. Automatically segmented images were characterized by 558 quantitative features, including gray-level histogram and matrices of co-occurrence, run-length, size zone, dependence, and neighboring gray-tone difference. Higher-order features were also calculated after applying square and wavelet transforms. Mann-Whitney U test assessed the diagnostic performance of the features, and the log-rank test assessed the prognostic value to predict Kaplan-Meier curves of overall and deterioration-free survival. Statistical analysis identified 51 independently validated radiomic features associated with COVID-19. Most of them were wavelet-transformed features; the highest performance was the small dependence matrix feature of ""low gray-level emphasis"" (area under the curve of 0.87, sensitivity of 0.85, p<0.001). Six features presented short-term prognostic value to predict overall and deterioration-free survival. The features of histogram ""mean absolute deviation"" and size zone matrix ""non-uniformity"" yielded the highest differences on Kaplan-Meier curves with a hazard ratio of 3.20 (p<0.05). The radiomic markers showed potential as quantitative measures correlated with the etiologic agent of acute infectious diseases and to stratify short-term risk of COVID-19 patients.
  • conferenceObject
    Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images
    (2020) FERREIRA JUNIOR, Jose Raniery; CARDENAS, Diego Armando Cardona; MORENO, Ramon Alfredo; REBELO, Marina de Fatima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Pneumonia is one of the leading causes of childhood mortality worldwide. Chest x-ray (CXR) can aid the diagnosis of pneumonia, but in the case of low contrast images, it is important to include computational tools to aid specialists. Deep learning is an alternative because it can identify patterns automatically, even in low-resolution images. We propose herein a convolutional neural network (CNN) architecture with different training strategies towards detecting pneumonia on CXRs and distinguishing its subforms of bacteria and virus. We also evaluated different image pre-processing methods to improve the classification. This study used CXRs from pediatric patients from a public pneumonia CXR dataset. The pre-processing methods evaluated were image cropping and histogram equalization. To classify the images, we adopted the VGG16 CNN and replaced its fully-connected layers with a customized multilayer perceptron. With this architecture, we proposed and evaluated four different training strategies: original CXR image (baseline), chest-cavity-cropped image (A), and histogram-equalized segmented image (B). The last strategy method (C) implemented is based on ensemble between strategies A and B. The performance was assessed by the area under the ROC curve (AUC) with 95% confidence interval (CI), accuracy, sensitivity, specificity, and F1-score. The ensemble model C yielded the highest performances: AUC of 0.97 (CI: 0.96-0.99) to classify pneumonia vs. normal, and AUC of 0.91 (CI: 0.88-0.94) to classify bacterial vs. viral cases. All models that used pre-processed images showed higher AUC than baseline, which used the original CXR image. Image cropping and histogram equalization reduced irrelevant information from the exam, enhanced contrast, and was able to identify fine CXR texture details. The proposed ensemble model increased the representation of inflammatory patterns from bacteria and viruses with few epochs to train the deep CNNs.
  • article 9 Citação(ões) na Scopus
    Complementary use of priors for pulmonary imaging with electrical impedance and ultrasound computed tomography
    (2021) ALSAKER, Melody; CARDENAS, Diego Armando Cardona; FURUIE, Sergio Shiguemi; MUELLER, Jennifer L.
    For medical professionals caring for patients undergoing mechanical ventilation due to respiratory failure, the ability to quickly and safely obtain images of pulmonary function at the patient's bedside would be highly desirable. Such images could be used to provide early warnings of developing pulmonary pathologies in real time, thereby reducing the incidence of complications and improving patient outcomes. Electrical impedance tomography (EIT) and low-frequency ultrasound computed tomography (USCT) are two imaging techniques with the potential to provide real-time non-ionizing pulmonary monitoring in the ICU setting, and each method has its own unique advantages as well as drawbacks. In this work, we describe a new algorithm for a system in which the strengths of the two modalities are combined in a complementary fashion. Specifically, preliminary reconstructions from each modality are used as priors to stabilize subsequent reconstructions, providing improved spatial resolution, sharper organ boundaries, and enhanced appearance of pathologies and other features. Results are validated using three numerically simulated thoracic phantoms representing pulmonary pathologies.
  • article 0 Citação(ões) na Scopus
    Blood Pressure Estimation From Photoplethysmography by Considering Intra- and Inter-Subject Variabilities: Guidelines for a Fair Assessment
    (2023) COSTA, Thiago Bulhoes Da Silva; DIAS, Felipe Meneguitti; CARDENAS, Diego Armando Cardona; TOLEDO, Marcelo Arruda Fiuza De; LIMA, Daniel Mario De; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Cardiovascular diseases are the leading causes of death, and blood pressure (BP) monitoring is essential for prevention, diagnosis, assessment, and treatment. Photoplethysmography (PPG) is a low-cost opto-electronic technique for BP measurement that allows the acquisition of a modulated light signal highly correlated with BP. There are several reports of methods to estimate BP from PPG with impressive results; in this study, we demonstrate that the previous results are excessively optimistic because of their train/test split configuration. To manage this limitation, we considered intra- and inter-subject data arrangements and demonstrated how they affect the results of feature-based BP estimation algorithms (i.e., XGBoost, LightGBM, and CatBoost) and signal-based algorithms (i.e., Residual U-Net, ResNet-18, and ResNet-LSTM). Inter-subject configuration performance is inferior to intra-subject configuration performance, regardless of the model. We also showed that, using only demographic attributes (i.e., age, sex, weight, and subject index number), a regression model achieved results comparable to those obtained in an intra-subject scenario.Although limited to a public clinical database, our findings suggest that algorithms that use an intra-subject setting without a calibration strategy may be learning to identify patients and not predict BP.
  • article 2 Citação(ões) na Scopus
    The Potential Role of Radiogenomics in Precision Medicine for COVID-19
    (2021) FERREIRA JUNIOR, Jose R.; CARDENAS, Diego A. C.