THARCISIO CITRANGULO TORTELLI JUNIOR

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 21 Citação(ões) na Scopus
    Emerging targets for combination therapy in melanomas
    (2015) SAITO, Renata de Freitas; TORTELLI JR., Tharcisio Citrangulo; JACOMASSI, Mayara D'Auria; OTAKE, Andreia Hanada; CHAMMAS, Roger
    Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment.
  • conferenceObject
    7-Ketocholesterol loaded-phosphatidylserine liposome induces cell death, autophagy, and growth inhibition of melanoma and breast adenocarcinoma.
    (2018) FAVERO, Giovani Marino; TORTELLI JR., Tharcisio Citrangulo; FERNANDES, Daniel; PRESTES, Ana Paula; KMETIUK, Louise N. B.; OTAKE, Andreia Hanada; ANDRADE, Luciana N. S.; FARIA, Daniele de Paula; CARNEIRO, Camila de Godoi; GARCEZ, Alexandre Teles; MARQUES, Fabio L. N.; CHAMMAS, Roger
  • article 16 Citação(ões) na Scopus
    Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death
    (2017) TORTELLI JUNIOR, Tharcisio Citrangulo; GODOY, Lyris Martins Franco de; SOUZA, Gustavo Antonio de; BONATTO, Diego; OTAKE, Andreia Hanada; SAITO, Renata de Freitas; ROSA, Jose Cesar; GREENE, Lewis Joel; CHAMMAS, Roger
    Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knockdown sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.
  • conferenceObject
    Melanoma and breast adenocarcinoma growth inhibition by a 7-ketocholesterol loaded-phosphatidylserine liposome
    (2018) FAVERO, Giovani M.; TORTELLI, Tharcisio C.; OTAKE, Andreia H.; ANDRADE, Luciana N.; FARIA, Daniele P.; CARNEIRO, Camila G.; GARCEZ, Alexandre T.; MARQUES, Fabio L.; CHAMMAS, Roger