THARCISIO CITRANGULO TORTELLI JUNIOR

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 21 Citação(ões) na Scopus
    Emerging targets for combination therapy in melanomas
    (2015) SAITO, Renata de Freitas; TORTELLI JR., Tharcisio Citrangulo; JACOMASSI, Mayara D'Auria; OTAKE, Andreia Hanada; CHAMMAS, Roger
    Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment.
  • article 17 Citação(ões) na Scopus
    Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death
    (2017) TORTELLI JUNIOR, Tharcisio Citrangulo; GODOY, Lyris Martins Franco de; SOUZA, Gustavo Antonio de; BONATTO, Diego; OTAKE, Andreia Hanada; SAITO, Renata de Freitas; ROSA, Jose Cesar; GREENE, Lewis Joel; CHAMMAS, Roger
    Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knockdown sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.
  • conferenceObject
    Effects of sulforaphane association to conventional therapy for treating triple-negative breast cancer
    (2023) COUTINHO, L. L.; CHENG, R.; RIDNOUR, L.; JUNQUEIRA, M. S.; CHAMMAS, R.; WINK, D.; TORTELLI, T. C.; RANGEL, M.
  • article 7 Citação(ões) na Scopus
    Metformin-induced chemosensitization to cisplatin depends on P53 status and is inhibited by Jarid1b overexpression in non-small cell lung cancer cells
    (2021) TORTELLI JR., Tharcisio Citrangulo; TAMURA, Rodrigo Esaki; JUNQUEIRA, Mara de Souza; MORORO, Janio da Silva; BUSTOS, Silvina Odete; NATALINO, Renato Jose Mendonca; RUSSELL, Shonagh; DESAUBRY, Laurent; STRAUSS, Bryan Eric; CHAMMAS, Roger
    Metformin has been tested as an anti-cancer therapy with potential to improve conventional chemotherapy. However, in some cases, metformin fails to sensitize tumors to chemotherapy. Here we test if the presence of P53 could predict the activity of metformin as an adjuvant for cisplatin-based therapy in non-small cell lung cancer (NSCLC). A549, HCC 827 (TP53 WT), H1299, and H358 (TP53 null) cell lines were used in this study. A549 cells were pre-treated with a sub-lethal dose of cisplatin to induce chemoresistance. The effects of metformin were tested both in vitro and in vivo and related to the ability of cells to accumulate Jarid1b, a histone demethylase involved in cisplatin resistance in different cancers. Metformin sensitized A549 and HCC 827 cells (but not H1299 and H358 cells) to cisplatin in a P53-dependent manner, changing its subcellular localization to the mitochondria. Treatment with a sub-lethal dose of cisplatin increased Jarid1b expression, yet downregulated P53 levels, protecting A549Res cells from metformin-induced chemosensitization to cisplatin and favored a glycolytic phenotype. Treatment with FL3, a synthetic flavagline, sensitized A549Res cells to cisplatin. In conclusion, metformin could potentially be used as an adjuvant for cisplatin-based therapy in NSCLC cells if wild type P53 is present.