THARCISIO CITRANGULO TORTELLI JUNIOR

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 13
  • conferenceObject
    Metabolomic profiling of breast cancer and adjacent tissue
    (2017) SANTOS, J. R.; BRENTANNI, M. M.; TORTELLI, T.; DALE, I.; WAITZBERG, A.; WAITZBERG, D.; RAVACCI, G.
  • conferenceObject
    Stochastic model of contact inhibition and the proliferation of melanoma in situ.
    (2018) MORAIS, Mauro Cesar C.; STUHL, Izabella; SABINO, Alan U.; LAUTENSCHLAGER, Willian W.; QUEIROGA, Alexandre S.; TORTELLI JR., Tharcisio C.; CHAMMAS, Roger; SUHOV, Yuri; RAMOS, Alexandre F.
  • conferenceObject
    HER2-associated lipogenic phenotype as a potential therapeutical target in breast cancer patients
    (2017) RAVACCI, G. R.; SANTOS, J. R.; BRENTANI, M. M.; TORTELLI, T.; DALE, I.; LOGULLO, A. F.; WAITZBERG, D. L.
  • conferenceObject
    7-Ketocholesterol loaded-phosphatidylserine liposome induces cell death, autophagy, and growth inhibition of melanoma and breast adenocarcinoma.
    (2018) FAVERO, Giovani Marino; TORTELLI JR., Tharcisio Citrangulo; FERNANDES, Daniel; PRESTES, Ana Paula; KMETIUK, Louise N. B.; OTAKE, Andreia Hanada; ANDRADE, Luciana N. S.; FARIA, Daniele de Paula; CARNEIRO, Camila de Godoi; GARCEZ, Alexandre Teles; MARQUES, Fabio L. N.; CHAMMAS, Roger
  • article 15 Citação(ões) na Scopus
    Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways
    (2021) MORELLI, Ana Paula; TORTELLI, Tharcisio Citrangulo Jr Jr; PAVAN, Isadora Carolina Betim; SILVA, Fernando Riback; GRANATO, Daniela Campos; PERUCA, Guilherme Francisco; PAULETTI, Bianca Alves; DOMINGUES, Romenia Ramos; BEZERRA, Rosangela Maria Neves; MOURA, Leandro Pereira De; LEME, Adriana Franco Paes; CHAMMAS, Roger; SIMABUCO, Fernando Moreira
    Lung cancer is the leading cause of cancer-associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin-resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription-quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL-12-mediated signaling. In CIS-resistant cells, MET regulated the apoptotic process, oxidative stress and G(2)/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.
  • article 16 Citação(ões) na Scopus
    Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death
    (2017) TORTELLI JUNIOR, Tharcisio Citrangulo; GODOY, Lyris Martins Franco de; SOUZA, Gustavo Antonio de; BONATTO, Diego; OTAKE, Andreia Hanada; SAITO, Renata de Freitas; ROSA, Jose Cesar; GREENE, Lewis Joel; CHAMMAS, Roger
    Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knockdown sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.
  • article 3 Citação(ões) na Scopus
    A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy
    (2022) GIOVANINI, Guilherme; BARROS, Luciana R. C.; GAMA, Leonardo R.; TORTELLI, Tharcisio C.; RAMOS, Alexandre F.
    Simple Summary Gene editing technologies reached a turning point toward epigenetic modulation for cancer treatment. Gene networks are complex systems composed of multiple non-trivially coupled elements capable of reliably processing dynamical information from the environment despite unavoidable randomness. However, this functionality is lost when the cells are in a diseased state. Hence, gene-editing-based therapeutic design can be viewed as a gene network dynamics modulation toward a healthy state. Enhancement of this control relies on mathematical models capable of effectively describing the regulation of stochastic gene expression. We use a two-state stochastic model for gene expression to investigate treatment response with a switching target gene. We show the necessity of modulating multiple gene-expression-related processes to reach a heterogeneity-reduced specific response using epigenetic-targeting cancer treatment designs. Our approach can be used as an additional tool for developing epigenetic-targeting treatments. In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
  • conferenceObject
    Reduction of HER2-associated lipogenic phenotype by docosahexaenoic acid (DHA) induces apoptosis in breast tumor cells harboring HER2 overexpression
    (2015) RAVACCI, Graziela R.; BRENTANI, Maria M.; FESTUCCIA, William; TORTELLI, Tharcisio; WAITZBERG, Angela F.; WAITZBERG, Dan L.
  • article 6 Citação(ões) na Scopus
    Sulforaphane: An emergent anti-cancer stem cell agent
    (2023) COUTINHO, Leandro de Lima; TORTELLI JUNIOR, Tharcisio Citrangulo; RANGEL, Maria Cristina
    Cancer is a major public health concern worldwide responsible for high morbidity and mortality rates. Alternative therapies have been extensively investigated, and plant-derived compounds have caught the attention of the scientific community due to their chemopreventive and anticancer effects. Sulforaphane (SFN) is one of these naturally occurring agents, and studies have shown that it is able to target a specific cancer cell population displaying stem-like properties, known as cancer stem cells (CSCs). These cells can self-renewal and differentiate to form highly heterogeneous tumor masses. Notably, most of the conventional chemotherapeutic agents cannot target CSCs once they usually exist in a quiescent state and overall, the available cytotoxic drugs focus on highly dividing cells. This is, at least in part, one of the reasons why some oncologic patients relapse after standard therapy. In this review we bring together studies supporting not only the chemopreventive and anticancer properties of SFN, but especially the emerging anti-CSCs effects of this natural product and its potential to be used with conventional antineoplastic drugs in the clinical setting.
  • article 9 Citação(ões) na Scopus
    Polymorphisms in the p27(kip-1) and prohibitin genes denote novel genes associated with melanoma risk in Brazil, a high ultraviolet index region
    (2013) FRANCISCO, Guilherme; GONCALVES, Fernanda T.; LUIZ, Olinda C.; SAITO, Renata F.; TOLEDO, Rodrigo A.; SEKIYA, Tomoko; TORTELLI JR., Tharcisio C.; VIOLLA, Esther D. V. B.; MAZZOTTI, Tatiane K. Furuya; CIRILO, Priscila D. R.; FESTA-NETO, Cyro; SANCHES, Jose A.; GATTAS, Gilka J. F.; ELUF-NETO, Jose; CHAMMAS, Roger
    Ultraviolet (UV) radiation is a major environmental risk factor to the development of cutaneous melanoma as it induces pyrimidine dimers in DNA. Genes that exert their function by arresting the cell cycle are critical to avoid carcinogenic mutations, allowing the processing of DNA repair systems. This study was carried out to evaluate the role of polymorphisms in cell cycle genes such as TP53, p27(kip-1), CDKN2A, prohibitin, and GADD153 in melanoma risk as well as their influence on known risk factors in a high UV index region. A hospital-based case-control study was carried out in Brazil to evaluate the contribution of polymorphisms in cell cycle genes toward melanoma risk. The study comprised 202 melanoma patients and 210 controls. The polymorphisms analyzed were TP53 Arg72Pro, p27(kip-1) Val109Gly, GADD153 Phe10Phe (rs697221), CDKN2A 3 ' UTR C540G, and prohibitin 3 ' UTR C1703T. As regards, p27(kip-1) Val109Gly, both heterozygous and homozygous Gly genotypes were shown to be protective genotypes on calculating both crude and adjusted odds ratios (ORs) for age, sex, and educational level [OR 0.37; 95% confidence interval (CI) 0.16-0.87; P < 0.05]. Similarly, the prohibitin TT genotype increased melanoma risk in the crude and adjusted analyses (OR 2.40; 95% CI 1.10-5.26; P < 0.05). The p27(kip-1) Gly protective genotype decreased the risk for melanoma in a stratified analysis of the known risk factors such as hair and eye color, sunburns, pigmented lesions, and European ancestry. The prohibitin TT genotype increased the risk of melanoma by such host factors. Our results showed for the first time that polymorphisms in p27(kip-1) Val109Gly and in prohibitin 3 ' UTR C1703T genotypes modulate the risk to melanoma in a high UV index region. Melanoma Res 23: 231-236 (C) 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.