ANTONIO CARLOS SEGURO

(Fonte: Lattes)
Índice h a partir de 2011
23
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/12 - Laboratório de Pesquisa Básica em Doenças Renais, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 32
  • article 1 Citação(ões) na Scopus
    Cathelicidin protects mice from Rhabdomyolysis-induced Acute Kidney Injury
    (2021) SILVA, Beatriz Helena Cermaria Soares da; ARIGA, Suely Kubo; BARBEIRO, Hermes Vieira; VOLPINI, Rildo Aparecido; BARBEIRO, Denise Frediani; SEGURO, Antonio Carlos; SILVA, Fabiano Pinheiro da
    Background: Cathelicidins are ancient and well-conserved antimicrobial peptides (AMPs) with intriguing immunomodulatory properties in both infectious and non-infectious inflammatory diseases. In addition to direct antimicrobial activity, cathelicidins also participate in several signaling pathways inducing both pro-inflammatory and anti-inflammatory effects. Acute kidney injury (AKI) is common in critically ill patients and is associated with high mortality and morbidity. Rhabdomyolysis is a major trigger of AKI. Objectives: Here, we investigated the role of cathelicidins in non-infectious Acute kidney Injury (AKI). Method: Using an experimental model of rhabdomyolysis, we induced AKI in wild-type and cathelicidin-related AMP knockout (CRAMP(-/-)) mice. Results: We previously demonstrated that CRAMP(-/-) mice, as opposed wild-type mice, are protected from AKI during sepsis induced by cecal ligation and puncture. Conversely, in the current study, we show that CRAMP(-/-) mice are more susceptible to the rhabdomyolysis model of AKI. A more in-depth investigation of wild-type and CRAMP(-/-) mice revealed important differences in the levels of several inflammatory mediators. Conclusion: Cathelicidins can induce a varied and even opposing repertoire of immune-inflammatory responses depending on the subjacent disease and the cellular context.
  • article 0 Citação(ões) na Scopus
    Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage
    (2018) BRAGANCA, Ana C. de; MOREAU, Regina L. M.; BRITO, Thales de; SHIMIZU, Maria H. M.; CANALE, Daniele; JESUS, Denise A. de; SILVA, Ana M. G.; GOIS, Pedro H.; SEGURO, Antonio C.; MAGALDI, Antonio J.
  • article 55 Citação(ões) na Scopus
    Vitamin D Deficiency Aggravates Chronic Kidney Disease Progression after Ischemic Acute Kidney Injury
    (2014) GONCALVES, Janaina Garcia; BRAGANCA, Ana Carolina de; CANALE, Daniele; SHIMIZU, Maria Heloisa Massola; SANCHES, Talita Rojas; MOYSES, Rosa Maria Affonso; ANDRADE, Lucia; SEGURO, Antonio Carlos; VOLPINI, Rildo Aparecido
    Background: Despite a significant improvement in the management of chronic kidney disease (CKD), its incidence and prevalence has been increasing over the years. Progressive renal fibrosis is present in CKD and involves the participation of several cytokines, including Transforming growth factor-beta 1 (TGF-beta 1). Besides cardiovascular diseases and infections, several studies show that Vitamin D status has been considered as a non-traditional risk factor for the progression of CKD. Given the importance of vitamin D in the maintenance of essential physiological functions, we studied the events involved in the chronic kidney disease progression in rats submitted to ischemia/reperfusion injury under vitamin D deficiency (VDD). Methods: Rats were randomized into four groups: Control; VDD; ischemia/reperfusion injury (IRI); and VDD+IRI. At the 62 day after sham or IRI surgery, we measured inulin clearance, biochemical variables and hemodynamic parameters. In kidney tissue, we performed immunoblotting to quantify expression of Klotho, TGF-beta, and vitamin D receptor (VDR); gene expression to evaluate renin, angiotensinogen, and angiotensin-converting enzyme; and immunohistochemical staining for ED1 (macrophages), type IV collagen, fibronectin, vimentin, and alpha-smooth mucle actin. Histomorphometric studies were performed to evaluate fractional interstitial area. Results: IRI animals presented renal hypertrophy, increased levels of mean blood pressure and plasma PTH. Furthermore, expansion of the interstitial area, increased infiltration of ED1 cells, increased expression of collagen IV, fibronectin, vimentin and alpha-actin, and reduced expression of Klotho protein were observed. VDD deficiency contributed to increased levels of plasma PTH as well as for important chronic tubulointerstitial changes (fibrosis, inflammatory infiltration, tubular dilation and atrophy), increased expression of TGF-beta 1 and decreased expression of VDR and Klotho protein observed in VDD+IRI animals. Conclusion: Through inflammatory pathways and involvement of TGF-beta 1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion.
  • article 20 Citação(ões) na Scopus
    Vitamin D Deficiency Aggravates the Renal Features of Moderate Chronic Kidney Disease in 5/6 Nephrectomized Rats
    (2018) BRAGANCA, Ana Carolina de; CANALE, Daniele; GONCALVES, Janaina Garcia; SHIMIZU, Maria Heloisa Massola; SEGURO, Antonio Carlos; VOLPINI, Rildo Aparecido
    The pathogenesis of chronic kidney disease (CKD) involves a very complex interaction between hemodynamic and inflammatory processes, leading to glomerular/vascular sclerosis, and fibrosis formation with subsequent evolution to end-stage of renal disease. Despite efforts to minimize the progression of CKD, its incidence and prevalence continue to increase. Besides cardiovascular diseases and infections, several studies demonstrate that vitamin D status could be considered as a non-traditional risk factor for the progression of CKD. Therefore, we investigated the effects of vitamin D deficiency (VDD) in the course of moderate CKD in 5/6 nephrectomized rats (Nx). Adult male Wistar rats underwent Sham surgery or Nx and were subdivided into the following four groups: Sham, receiving standard diet (Sham); Sham VDD, receiving vitamin D-free diet (VDD); Nx, receiving standard diet (Nx); and VDD+Nx, receiving vitamin D-free diet (VDD+Nx). Sham or Nx surgeries were performed 30 days after standard or vitamin D-free diets administration. After validation of vitamin D depletion, we considered only Nx and VDD+Nx groups for the following studies. Sixty days after surgeries, VDD+Nx rats exhibited hypertension, a greater decline in renal function and plasma FGF-23 levels, renal hypertrophy, as well as higher plasma levels of PTH and aldosterone. In addition, those animals presented more significant chronic tubulointerstitial changes (cortical interstitial expansion/inflammation/fibrosis), higher expression of collagen IV, fibronectin and alpha-smooth muscle actin, and lower expressions of JG12 and M2 macrophages. Also, VDD+Nx rats had greater infiltration of inflammatory cells (M1 macrophages and T-cells). Such changes were accompanied by higher expression of TGF-beta 1 and angiotensinogen and decreased expression of VDR and Klotho protein. Our observations indicate that vitamin D deficiency impairs the renal function and worsens the renovascular and morphological changes, aggravating the features of moderate CKD in 5/6 nephrectomized rats.
  • article 34 Citação(ões) na Scopus
    Vitamin D deficiency aggravates ischemic acute kidney injury in rats
    (2015) BRAGANCA, Ana Carolina de; VOLPINI, Rildo A.; CANALE, Daniele; GONCALVES, Janaina G.; SHIMIZU, Maria Heloisa M.; SANCHES, Talita R.; SEGURO, Antonio C.; ANDRADE, Lucia
    Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclindependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI.
  • article 74 Citação(ões) na Scopus
    Vitamin D Deficiency in Chronic Kidney Disease: Recent Evidence and Controversies
    (2018) GOIS, Pedro Henrique Franca; WOLLEY, Martin; RANGANATHAN, Dwarakanathan; SEGURO, Antonio Carlos
    Vitamin D (VD) is a pro-hormone essential for life in higher animals. It is present in few types of foods and is produced endogenously in the skin by a photochemical reaction. The final step of VD activation occurs in the kidneys involving a second hydroxylation reaction to generate the biologically active metabolite 1,25(OH)(2)-VD. Extrarenal 1-hydroxylation has also been described to have an important role in autocrine and paracrine signaling. Vitamin D deficiency (VDD) has been in the spotlight as a major public healthcare issue with an estimated prevalence of more than a billion people worldwide. Among individuals with chronic kidney disease (CKD), VDD prevalence has been reported to be as high as 80%. Classically, VD plays a pivotal role in calcium and phosphorus homeostasis. Nevertheless, there is a growing body of evidence supporting the importance of VD in many vital non-skeletal biological processes such as endothelial function, renin-angiotensin-aldosterone system modulation, redox balance and innate and adaptive immunity. In individuals with CKD, VDD has been associated with albuminuria, faster progression of kidney disease and increased all-cause mortality. Recent guidelines support VD supplementation in CKD based on extrapolation from cohorts conducted in the general population. In this review, we discuss new insights on the multifactorial pathophysiology of VDD in CKD as well as how it may negatively modulate different organs and systems. We also critically review the latest evidence and controversies of VD monitoring and supplementation in CKD patients.
  • article 8 Citação(ões) na Scopus
    Renal Tubular Dysfunction in Sickle Cell Disease
    (2013) SILVA JUNIOR, Geraldo B.; VIEIRA, Ana Patricia F.; BEM, Amanda X. Couto; ALVES, Marilia P.; MENESES, Gdayllon C.; MARTINS, Alice M. C.; SANCHES, Talita R.; ANDRADE, Lucia C.; SEGURO, Antonio C.; LIBORIO, Alexandre B.; DAHER, Elizabeth F.
    Background/Aims: Kidney abnormalities are one of the main chronic complications of sickle cell disease (SCD). The aim of this study is to investigate the occurrence of renal tubular abnormalities among patients with SCD. Methods: This is a prospective study with 26 SCD adult patients in Brazil. Urinary acidification and concentration tests were performed using calcium chloride (CaCl2), after a 12h period of water and food deprivation. Fractional excretion of sodium (FENa), transtubular potassium gradient (TTKG) and solute free water reabsorption (TcH2O) were calculated. The SCD group was compared to a group of 15 healthy volunteers (control group). Results: Patient`s average age and gender were similar to controls. Urinary acidification deficit was found in 10 SCD patients (38.4%), who presented urinary pH > 5.3 after CaCl2 test. Urinary osmolality was significantly lower in SCD patients (355 +/- 60 vs. 818 +/- 202mOsm/kg, p= 0.0001, after 12h period water deprivation). Urinary concentration deficit was found in all SCD patients (100%). FENa was higher among SCD patients (0.75 +/- 0.3 vs. 0.55 +/- 0.2%, p= 0.02). The TTKG was higher in SCD patients (5.5 +/- 2.5 vs. 3.0 +/- 1.5, p= 0.001), and TcH2O was lower (0.22 +/- 0.3 vs. 1.1 +/- 0.3L/day, p= 0.0001). Conclusions: SCD is associated with important kidney dysfunction. The main abnormalities found were urinary concentrating and incomplete distal acidification defect. There was also an increase in the potassium transport and decrease in water reabsorption, evidencing the occurrence of distal tubular dysfunction.
  • article 1 Citação(ões) na Scopus
    Treatment with beta-blocker nebivolol ameliorates oxidative stress and endothelial dysfunction in tenofovir-induced nephrotoxicity in rats
    (2022) NASCIMENTO, Mariana Moura; BERNARDO, Desiree Rita Denelle; BRAGANCA, Ana Carolina de; SHIMIZU, Maria Heloisa Massola; SEGURO, Antonio Carlos; VOLPINI, Rildo Aparecido; CANALE, Daniele
    BackgroundTenofovir disoproxil fumarate (TDF), a widely prescribed component in antiretroviral regimens, has been associated with nephrotoxicity. Nebivolol is a third generation selective beta-1 adrenergic receptor blocker and may protect renal structure and function through the suppression of oxidative stress and enhancement of nitric oxide (NO) synthesis. We aimed to investigate whether nebivolol could be an effective therapeutic strategy to mitigate tenofovir-induced nephrotoxicity. MethodsWe allocated Wistar rats to four groups: control (C), received a standard diet for 30 days; NBV, received a standard diet for 30 days added with nebivolol (100 mg/kg food) in the last 15 days; TDF, received a standard diet added with tenofovir (300 mg/kg food) for 30 days; and TDF+NBV, received a standard diet added with tenofovir for 30 days and nebivolol in the last 15 days. ResultsLong-term exposure to tenofovir led to impaired renal function, induced hypertension, endothelial dysfunction and oxidative stress. Nebivolol treatment partially recovered glomerular filtration rate, improved renal injury, normalized blood pressure and attenuated renal vasoconstriction. Administration of nebivolol contributed to reductions in asymmetric dimethylarginine (ADMA) levels as well as increases in endothelial nitric oxide sintase (eNOS) accompanied by renin-angiotensin-aldosterone system downregulation and decreases in macrophage and T-cells infiltrate. Furthermore, nebivolol was responsible for the maintenance of the adequate balance of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and it was associated with reductions in NADPH oxidase (NOX) subunits. ConclusionNebivolol holds multifaceted actions that promote an advantageous option to slow the progression of kidney injury in tenofovir-induced nephrotoxicity.
  • article 8 Citação(ões) na Scopus
    Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage
    (2017) BRAGANCA, Ana C. de; MOREAU, Regina L. M.; BRITO, Thales de; SHIMIZU, Maria H. M.; CANALE, Daniele; JESUS, Denise A. de; SILVA, Ana M. G.; GOIS, Pedro H.; SEGURO, Antonio C.; MAGALDI, Antonio J.
    Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.
  • article 20 Citação(ões) na Scopus
    N-Acetylcysteine Protects Rats with Chronic Renal Failure from Gadolinium-Chelate Nephrotoxicity
    (2012) PEREIRA, Leonardo Victor Barbosa; SHIMIZU, Maria Heloisa Massola; RODRIGUES, Lina Paola Miranda Ruiz; LEITE, Claudia Costa; ANDRADE, Lucia; SEGURO, Antonio Carlos
    The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC). Male Wistar rats were submitted to 5/6 nephrectomy (Nx) to induced CRF. An ionic - cyclic Gd (Gadoterate Meglumine) was administrated (1.5 mM/KgBW, intravenously) 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd-chelate administration: 1 - Nx (n = 7); 2 - Nx+NAC (n = 6); 3 - Nx+Gd (n = 7); 4 - Nx+NAC+Gd (4.8 g/L in drinking water), initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6). This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW), proteinuria (mg/24 hs), serum iron (mu g/dL); serum ferritin (ng/mL); transferrin saturation (%), TIBC (mu g/dL) and TBARS (nmles/ml). Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.