SUELY KUNIMI KUBO ARIGA

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/51 - Laboratório de Emergências Clínicas, Hospital das Clínicas, Faculdade de Medicina
LIM/02 - Laboratório de Anatomia Médico-Cirúrgica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • article 1 Citação(ões) na Scopus
    Cathelicidin protects mice from Rhabdomyolysis-induced Acute Kidney Injury
    (2021) SILVA, Beatriz Helena Cermaria Soares da; ARIGA, Suely Kubo; BARBEIRO, Hermes Vieira; VOLPINI, Rildo Aparecido; BARBEIRO, Denise Frediani; SEGURO, Antonio Carlos; SILVA, Fabiano Pinheiro da
    Background: Cathelicidins are ancient and well-conserved antimicrobial peptides (AMPs) with intriguing immunomodulatory properties in both infectious and non-infectious inflammatory diseases. In addition to direct antimicrobial activity, cathelicidins also participate in several signaling pathways inducing both pro-inflammatory and anti-inflammatory effects. Acute kidney injury (AKI) is common in critically ill patients and is associated with high mortality and morbidity. Rhabdomyolysis is a major trigger of AKI. Objectives: Here, we investigated the role of cathelicidins in non-infectious Acute kidney Injury (AKI). Method: Using an experimental model of rhabdomyolysis, we induced AKI in wild-type and cathelicidin-related AMP knockout (CRAMP(-/-)) mice. Results: We previously demonstrated that CRAMP(-/-) mice, as opposed wild-type mice, are protected from AKI during sepsis induced by cecal ligation and puncture. Conversely, in the current study, we show that CRAMP(-/-) mice are more susceptible to the rhabdomyolysis model of AKI. A more in-depth investigation of wild-type and CRAMP(-/-) mice revealed important differences in the levels of several inflammatory mediators. Conclusion: Cathelicidins can induce a varied and even opposing repertoire of immune-inflammatory responses depending on the subjacent disease and the cellular context.
  • article 17 Citação(ões) na Scopus
    Cathelicidin-deficient mice exhibit increased survival and upregulation of key inflammatory response genes following cecal ligation and puncture
    (2017) SEVERINO, Patricia; ARIGA, Suely Kubo; BARBEIRO, Hermes Vieira; LIMA, Thais Martins de; SILVA, Elisangela de Paula; BARBEIRO, Denise Frediani; MACHADO, Marcel Cerqueira Cesar; NIZET, Victor; SILVA, Fabiano Pinheiro da
    Antimicrobial peptides possess a myriad of molecular properties including bacterial killing and the regulation of many aspects of innate immunity. Cathelicidins are a group of antimicrobial peptides widely investigated by the scientific community. Many studies have focused on the bactericidal and pro-inflammatory roles of cathelicidins. Because the role of endogenous cathelicidin expression remains obscure in deep-seated systemic infections, we induced sepsis in cathelicidin knockout and wild-type (WT) mice by cecal ligation and puncture, performing transcriptome screening by DNA micro-array in conjunction with other immunologic assays. Cathelicidin-deficient mice showed increased survival compared to WT mice in this established experimental model of polymicrobial sepsis, in association with upregulation of certain key inflammatory response genes. Therefore, cathelicidins can exert both pro- and anti-inflammatory activities depending on the disease and cellular context.
  • article 31 Citação(ões) na Scopus
    High-fat diet inhibits PGC-1 alpha suppressive effect on NF kappa B signaling in hepatocytes
    (2018) BARROSO, Wermerson Assuncao; VICTORINO, Vanessa Jacob; JEREMIAS, Isabela Casagrande; PETRONI, Ricardo Costa; ARIGA, Suely Kunimi Kubo; SALLES, Thiago A.; BARBEIRO, Denise Frediani; LIMA, Thais Martins de; SOUZA, Heraldo Possolo de
    The peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) regulates the expression of genes implicated in fatty acid oxidation and oxidative phosphorylation. Its role in liver steatosis is well established, since mice with liver-specific deletion of PGC-1 alpha exhibit lipid accumulation and high-fat diet reduces hepatic PGC-1 alpha expression in mice. In this study, we investigated the role of PGC-1 alpha in the inflammatory changes observed in steatohepatitis induced by high-fat diet. C57black/6 mice were fed a high-fat diet containing 30% fat for 10 weeks. After euthanasia, liver morphology was examined by HE staining and inflammation was determined by IL-6, TNF-alpha, and IL-1 beta quantification. Liver gene expression of PGC-1 isoforms was evaluated by real-time PCR and p65 NF kappa B nuclear translocation by Western blotting. HepG2 cells were treated with linoleic acid overload for 72 h to create an in vitro model of steatohepatitis. RNA interference (RNAi) was used to evaluate the involvement of PGC-1 alpha on inflammatory mediators' production by hepatocytes. The high-fat diet led to a state of nonalcoholic steatohepatitis, associated with increased deposits of intra-abdominal fat, hyperglycemia and hyperlipidemia. Mice liver also exhibited increased proinflammatory cytokines' levels, decreased PGC-1 alpha expression, and marked increase in p65 NF kappa B nuclear translocation. Linoleic acid treated cells also presented increased expression of proinflammatory cytokines and decreased PGC-1 alpha expression. The knockdown of PGC-1 alpha content caused an increase in IL-6 expression and release via enhanced I kappa B alpha phosphorylation and subsequent increase of p65 NF kappa B nuclear translocation. High-fat diet induces liver inflammation by inhibiting PGC-1 alpha expression and its suppressive effect in NF kappa B pathway.
  • article 3 Citação(ões) na Scopus
    Crotoxin modulates inflammation and macrophages? functions in a murine sepsis model
    (2022) BRETONES, Marisa Langeani; SAMPAIO, Sandra Coccuzzo; BARBEIRO, Denise Frediani; ARIGA, Suely K. Kubo; SORIANO, Francisco Garcia; LIMA, Thais Martins de
    Sepsis is a syndrome of physiological and biochemical abnormalities induced by an infection that represents a major public health concern. It involves the early activation of inflammatory responses. Crotoxin (CTX), the major toxin of the South American rattlesnake Crotalus durissus terrificus venom, presents longstanding antiinflammatory properties. Since immune system modulation may be a strategic target in sepsis management, and macrophages' functional and secretory activities are related to the disease's progression, we evaluated the effects of CTX on macrophages from septic animals. Balb/c male mice submitted to cecal ligation and puncture (CLP) were treated with CTX (0.9 mu g/animal, subcutaneously) 1 h after the procedure and euthanized after 6 h. We used plasma samples to quantify circulating cytokines and eicosanoids. Bone marrow differentiated macrophages (BMDM) were used to evaluate the CTX effect on macrophages' functions. Our data show that CTX administration increased the survival rate of the animals from 40% to 80%. Septic mice presented lower plasma concentrations of IL-6 and TNF-alpha after CTX treatment, and higher concentrations of LXA4, PGE2, and IL-1 beta. No effect was observed in IL-10, IFN-gamma, and RD1 concentrations. BMDM from septic mice treated with CTX presented decreased capacity of E. coli phagocytosis, but sustained NO and H2O2 production. We also observed higher IL-6 concentration in the culture medium of BMDM from septic mice, and CTX induced a significant reduction. CTX treatment increased IL-10 production by macrophages as well. Our data show that the protective effect of CTX in sepsis mortality involves modulation of macrophage functions and inflammatory mediators' production.
  • article 1 Citação(ões) na Scopus
    Hypertonic solution-induced preconditioning reduces inflammation and mortality rate
    (2019) PIMENTEL, Rosangela Nascimento; PETRONI, Ricardo Costa; BARBEIRO, Hermes Vieira; BARBEIRO, Denise Frediani; ANDRADE, Mariana Macedo; ARIGA, Suely Kumini; SORIANO, Francisco Garcia
    BackgroundDysregulated inflammatory response is common cause of organ damage in critical care patients. Preconditioning/tolerance is a strategy to prevent exacerbated inflammation. The aim of this study is to analyze hypertonic saline 7.5% as a potential inducer of preconditioning that protect from a lethal dose of LPS and modulates systemic inflammatory profile in mice.MethodsMale Balb/C mice received intravenous (i.v.) injections of Hypertonic solution (NaCl 7.5%) (0.8ml) for 3days, on day 8th was challenged with LPS 15mg/kg. Controls with Saline 0.9%, urea and sorbitol were performed. Microarray of mRNA expression was analyzed from HS versus saline from macrophages to identified the pathways activated by HS.ResultsHS preconditioning reduced mortality after LPS injection as well reduced the cytokines release in plasma of the animals challenged by LPS. In order to check how HS induces a preconditioning state we measured plasma cytokines after each HS infusion. Repeated HS injections induced a state of preconditioning that reprograms the inflammatory response, resulting in reduced inflammatory cytokine production. A microarray of mRNA demonstrated that Hypertonic solution increased the expression of several genes in special Mapkbp1 and Atf3.Conclusionhypertonic solution induces preconditioning/tolerance reducing mortality and inflammatory response after LPS challenge.
  • article 23 Citação(ões) na Scopus
    The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity' for repurposing a clinically used oncological drug for the experimental therapy of sepsis
    (2019) AHMAD, Akbar; VIEIRA, Juliana de Camargo; MELLO, Aline Haas de; LIMA, Thais Martins de; ARIGA, Suely Kubo; BARBEIRO, Denise Frediani; BARBEIRO, Hermes Vieira; SZCZESNY, Bartosz; TORO, Gabor; DRUZHYNA, Nadiya; RANDI, Elisa B.; MARCATTI, Michela; TOLIVER-KINSKY, Tracy; KISS, Andras; LIAUDET, Lucas; SALOMAO, Reinaldo; SORIANO, Francisco Garcia; SZABO, Csaba
    Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. In U937 cells subjected to oxidative stress, cellular bioenergetics, viability and DNA integrity were measured. Olaparib was used to inhibit PARP. The results show that in adult male mice subjected to CLP, olaparib (1-10 mg/kg i.p.) improved multiorgan dysfunction. Olaparib treatment reduced the degree of bacterial CFUs. Olaparib attenuated the increases in the levels of several circulating mediators in the plasma. In the spleen, the number of CD4 + and CD8 + lymphocytes were reduced in response to CLP; this reduction was inhibited by olaparib treatment. Treg but not Th17 lymphocytes increased in response to CLP; these cell populations were reduced in sepsis when the animals received olaparib. The Th17/Treg ratio was lower in CLP-olaparib group than in the CLP control group. Analysis of miRNA expression identified a multitude of changes in spleen and circulating white blood cell miRNA levels after CLP; olaparib treatment selectively modulated these responses. Olaparib extended the survival rate of mice subjected to CLP. In contrast to males, in female mice olaparib did not have significant protective effects in CLP. In aged mice olaparib exerted beneficial effects that were less pronounced than the effects obtained in young adult males. In in vitro experiments in U937 cells subjected to oxidative stress, olaparib (1-100 mu M) inhibited PARP activity, protected against the loss of cell viability, preserved NAD+ levels and improved cellular bioenergetics. In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
  • article 35 Citação(ões) na Scopus
    B-1 cells temper endotoxemic inflammatory responses
    (2011) BARBEIRO, Denise Frediani; BARBEIRO, Hermes Vieira; FAINTUCH, Joel; ARIGA, Suely K. Kubo; MARIANO, Mario; POPI, Ana Flavia; SOUZA, Heraldo Possolo de; VELASCO, Irineu Tadeu; SORIANO, Francisco Garcia
    Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling.
  • article 6 Citação(ões) na Scopus
    Endothelial injury in COVID-19 and septic patients
    (2022) HOKAMA, Larissa Tami; VEIGA, Alicia Dudy Muller; MENEZES, Maria Clara Saad; PINTO, Agnes Araujo Sardinha; LIMA, Thais Martins de; ARIGA, Suely Kunimi Kubo; BARBEIRO, Hermes Vieira; BARBEIRO, Denise Frediani; MOREIRA, Claudia de Lucena; STANZANI, Gabriela; BRANDAO, Rodrigo Antonio; MARCHINI, Julio Flavio; ALENCAR, Julio Cesar; MARINO, Lucas Oliveira; GOMEZ, Luz Marina; SOUZA, Heraldo P.
    Systemic inflammatory response, as observed in sepsis and severe COVID-19, may lead to endothelial damage. Therefore, we aim to compare the extent of endothelial injury and its relationship to inflammation in both diseases. We included patients diagnosed with sepsis (SEPSIS group, n = 21), mild COVID-19 (MILD group, n = 31), and severe COVID-19 (SEVERE group, n = 24). Clinical and routine laboratory data were obtained, circulating cytokines (INF-gamma, TNF-alpha, and IL-10) and endothelial injury markers (E-Selectin, Tissue Factor (TF) and von Willebrand factor (vWF)) were measured. Compared to the SEPSIS group, patients with severe COVID-19 present similar clinical and laboratory data, except for lower circulating IL-10 and E-Selectin levels. Compared to the MILD group, patients in the SEVERE group showed higher levels of TNF-alpha, IL-10, and TF. There was no clear relationship between cytokines and endothelial injury markers among the three studied groups; however, in SEVERE COVID-19 patients, there is a positive relationship between INF-gamma with TF and a negative relationship between IL-10 and vWF. In conclusion, COVID-19 and septic patients have a similar pattern of cytokines and endothelial dysfunction markers. These findings highlight the importance of endothelium dysfunction in COVID-19 and suggest that endothelium should be better evaluated as a therapeutic target for the disease.