VICTOR DEBBAS

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Cardio-Pneumologia, Faculdade de Medicina
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 8 Citação(ões) na Scopus
    Fibrillin-1 mg Delta(lPn) Marfan syndrome mutation associates with preserved proteostasis and bypass of a protein disulfide isomerase-dependent quality checkpoint
    (2016) MEIRELLES, Thayna; ARAUJO, Thais L. S.; NOLASCO, Patricia; MORETTI, Ana I. S.; GUIDO, Maria C.; DEBBAS, Victor; PEREIRA, Lygia V.; LAURINDO, Francisco R.
    Fibrillin-1 mutations promote Marfan syndrome (MFS) via complex yet unclear pathways. The roles of endoplasmic reticulum (ER) and the major ER redox chaperone protein disulfide isomerase-A1 in the processing of normal and mutated fibrillin-1 and ensuing protein secretion and/or intracellular retention are unclear. Our results in mouse embryonic fibroblasts bearing the exon-skipping mg Delta(lox-p-neo) (mg Delta(lpn)) mutation, which associates in vivo with MFS and in vitro with disrupted microfibrils, indicate a preserved ER-dependent proteostasis or redox homeostasis. Rather, mutated fibrillin-1 is secreted normally through Golgi-dependent pathways and is not intracellularly retained. Similar results occurred for the C1039G point mutation. In parallel, we provide evidence that PDIA1 physically interacts with fibrillin-1 in the ER. Moreover, siRNA against PDIA1 augmented fibrillin-1 secretion rates in wild-type cells. However, fibrillin-1 with the mg Delta(lpn) mutation bypassed PDI checkpoint delay, while the C1039G mutation did not. This heretofore undisclosed PDIA1-mediated mechanism may be important to control the extracellular availability of function-competent fibrillin-1, an important determinant of disease phenotype. Moreover, our results may reveal a novel, holdase-like, PDI function associated with ER protein quality control.
  • article 9 Citação(ões) na Scopus
    Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model
    (2018) GUIDO, Maria C.; DEBBAS, Victor; SALEMI, Vera M.; TAVARES, Elaine R.; MEIRELLES, Thayna; ARAUJO, Thais L. S.; NOLASCO, Patricia; FERREIRA-FILHO, Julio C. A.; TAKIMURA, Celso K.; PEREIRA, Lygia V.; LAURINDO, Francisco R.
    Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mg Delta(loxPneo) mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.
  • conferenceObject
    Chemotheraphy acutely impairs neurovascular and hemodynamic responses in patients with breast cancer
    (2019) SALES, Allan Kluser; NEGRAO, Marcelo; TESTA, Laura; FERREIRA-SANTOS, Larissa; GROEHS, Raphaela; CARVALHO, Bruna; TOSCHI-DIAS, Edgar; ROCHA, Natalia; LAURINDO, Francisco; DEBBAS, Victor Kluser; RONDON, Maria Kluser; MANO, Max; HAJJAR, Ludhmila; HOFF, Paulo; FILHO, Robero; NEGRAO, Carlos
  • article 11 Citação(ões) na Scopus
    Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis
    (2011) ANDRADE, Claudia R. de; STOLF, Beatriz S.; DEBBAS, Victor; ROSA, Daniela S.; KALIL, Jorge; COELHO, Veronica; LAURINDO, Francisco R. M.
    Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.
  • article 11 Citação(ões) na Scopus
    Syzygium cumini Leaf Extract Reverts Hypertriglyceridemia via Downregulation of the Hepatic XBP-1s/PDI/MTP Axis in Monosodium L-Glutamate-Induced Obese Rats
    (2019) FRANCA, Lucas Martins; COELHO, Caio Fernando Ferreira; FREITAS, Larissa Nara Costa; SOUZA, Ivana Leticia Santos; CHAGAS, Vinicyus Teles; DEBBAS, Victor; LIMA, Thais Martins de; SOUZA, Heraldo Possolo de; LAURINDO, Francisco Rafael Martins; PAES, Antonio Marcus de Andrade
    Syzygium cumini is used worldwide for the treatment of metabolic syndrome-associated outcomes. Previously, we described the antihypertriglyceridemic effect of the hydroethanolic extract of S. cumini leaf (HESc) in monosodium L-glutamate- (MSG-) induced obese rats. This study sought to investigate the molecular mechanisms underlying the antihypertriglyceridemic effect of HESc in MSG-obese rats. Newborn male Wistar rats were injected subcutaneously with MSG (4.0 g/kg/day, obese group) or saline 1.25% (1.0 mL/kg/day, lean group), from 2nd through 10th postnatal day. At 8 weeks old, obese rats started to be orally treated with HESc (0.5 or 1.0 g/kg/day, n = 7) or saline 0.9% (1 mL/kg/day, n = 7). Lean rats received saline solution (1 mL/kg/day, n = 7). Upon 8-week treatment, animals were euthanized for blood and tissue collection. Another set of adult nonobese Wistar rats was used for the assessment of HESc acute effects on Triton WR1339-induced hypertriglyceridemia. HESc reduced weight gain, as well as adipose tissue fat pads, without altering food intake of obese rats. HESc restored fasting serum glucose, triglycerides, total cholesterol, and free fatty acids, as well as insulin sensitivity, to levels similar to lean rats. Additionally, HESc halved the triglyceride content into very low-density lipoprotein particles, as well as healed liver steatosis, in obese rats. Hepatic protein expression of the endoplasmic reticulum chaperone GRP94 was decreased by HESc, which also downregulated the hepatic triglyceride secretion pathway by reducing the splicing of X-box binding protein 1 (XBP-1s), as well as protein disulfide isomerase (PDI) and microsomal triglyceride transfer protein (MTP) translational levels. This action was further corroborated by the acute inhibitory effect of HESc on triglyceride accumulation on Triton WR1339-treated rats. Our data support the downregulation of the XBP- ls/PDI/MTP axis in the liver of MSG-obese rats as a novel feasible mechanism for the antihypertriglyceridemic effect promoted by the polyphenolic phytocomplex present in S. cumini leaf.