Effect of the Antioxidant Lipoic Acid in Aortic Phenotype in a Marfan Syndrome Mouse Model

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Citação
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, article ID 3967213, 16p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mg Delta(loxPneo) mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.
Palavras-chave
Referências
  1. Arnmash NM, 2008, CURR PROB CARDIOLOGY, V33, P7, DOI 10.1016/j.cpcardiol.2007.10.001
  2. Bassi E, 2014, BRAZ J MED BIOL RES, V47, P119, DOI 10.1590/1414-431X20133193
  3. Birukov KG, 2009, ANTIOXID REDOX SIGN, V11, P1651, DOI [10.1089/ars.2008.2390, 10.1089/ARS.2008.2390]
  4. Brooke BS, 2008, NEW ENGL J MED, V358, P2787, DOI 10.1056/NEJMoa0706585
  5. Buday A, 2010, AM J PHYSIOL-HEART C, V299, pH386, DOI 10.1152/ajpheart.01042.2009
  6. Carta L, 2009, J BIOL CHEM, V284, P5630, DOI 10.1074/jbc.M806962200
  7. Cat AND, 2013, ANTIOXID REDOX SIGN, V19, P1110, DOI 10.1089/ars.2012.4641
  8. Chung AWY, 2008, CIRC RES, V102, pE73, DOI 10.1161/CIRCRESAHA.108.174367
  9. Collod-Beroud G, 2003, HUM MUTAT, V22, P199, DOI 10.1002/humu.10249
  10. Cook JR, 2015, CLIN GENET, V87, P11, DOI 10.1111/cge.12436
  11. Costa G, 2016, EXP GERONTOL, V85, P71, DOI 10.1016/j.exger.2016.09.020
  12. Engelfriet PM, 2006, HEART, V92, P1238, DOI 10.1136/hrt.2005.081638
  13. Fiorillo C, 2010, INT J CARDIOL, V145, P544, DOI 10.1016/j.ijcard.2010.04.077
  14. Goraca A, 2011, PHARMACOL REP, V63, P849
  15. Groenink M, 2013, EUR HEART J, V34, P3491, DOI 10.1093/eurheartj/eht334
  16. Habashi JP, 2011, SCIENCE, V332, P361, DOI 10.1126/science.1192152
  17. Habashi JP, 2006, SCIENCE, V312, P117, DOI 10.1126/science.1124287
  18. Hibender S, 2016, ARTERIOSCL THROM VAS, V36, P1618, DOI 10.1161/ATVBAHA.116.307841
  19. Holm TM, 2011, SCIENCE, V332, P358, DOI 10.1126/science.1192149
  20. Judge DP, 2008, ANNU REV MED, V59, P43, DOI 10.1146/annurev.med.59.103106.103801
  21. Lacro RV, 2014, NEW ENGL J MED, V371, P2061, DOI 10.1056/NEJMoa1404731
  22. Lima BL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014136
  23. Lindeman JHN, 2010, P NATL ACAD SCI USA, V107, P862, DOI 10.1073/pnas.0910312107
  24. Loeys BL, 2015, DRUG DISCOV TODAY, V20, P262, DOI 10.1016/j.drudis.2014.09.022
  25. Matlung HL, 2009, ANTIOXID REDOX SIGN, V11, P1699, DOI 10.1089/ARS.2008.2408
  26. Pereira L, 1999, P NATL ACAD SCI USA, V96, P3819, DOI 10.1073/pnas.96.7.3819
  27. Radonic T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032963
  28. Ramirez F, 2007, CURR OPIN GENET DEV, V17, P252, DOI 10.1016/j.gde.2007.04.006
  29. Ramirez F, 2009, J BIOL CHEM, V284, P14677, DOI 10.1074/jbc.R900004200
  30. Salemi Vera M C, 2005, Eur J Echocardiogr, V6, P41, DOI 10.1016/j.euje.2004.06.001
  31. Samarakoon R, 2013, CELL SIGNAL, V25, P264, DOI 10.1016/j.cellsig.2012.10.003
  32. Schoenhoff FS, 2013, CIRCULATION, V127, P1569, DOI 10.1161/CIRCULATIONAHA.113.001457
  33. Shay KP, 2008, IUBMB LIFE, V60, P362, DOI 10.1002/iub.40
  34. Sirvente RA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087935
  35. Summers KM, 2005, AM J MED GENET A, V139A, P2, DOI 10.1002/ajmg.a.30981
  36. Tibullo D, 2017, INFLAMM RES, V66, P947, DOI 10.1007/s00011-017-1079-6
  37. van Karnebeek CDM, 2001, ARCH DIS CHILD, V84, P129, DOI 10.1136/adc.84.2.129
  38. Winterbourn CC, 2008, NAT CHEM BIOL, V4, P278, DOI 10.1038/nchembio.85
  39. Wu D, 2013, J SURG RES, V184, P907, DOI 10.1016/j.jss.2013.06.007
  40. Xiong W, 2008, J VASC SURG, V47, P166, DOI 10.1016/j.jvs.2007.09.016
  41. Xiong WF, 2012, CIRC RES, V110, pE92, DOI 10.1161/CIRCRESAHA.112.268268
  42. Yang HHC, 2010, J THORAC CARDIOV SUR, V140, P305, DOI 10.1016/j.jtcvs.2009.10.039
  43. Yang HHC, 2010, VASC PHARMACOL, V52, P37, DOI 10.1016/j.vph.2009.10.005
  44. Yang HHC, 2009, BRIT J PHARMACOL, V158, P1503, DOI 10.1111/j.1476-5381.2009.00443.x