MARIANA FERREIRA DE ASSIS FUNARI

(Fonte: Lattes)
Índice h a partir de 2011
18
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 71
  • article 28 Citação(ões) na Scopus
    Two rare loss-of-function variants in the STAG3 gene leading to primary ovarian insufficiency
    (2019) FRANCA, Monica M.; NISHI, Mirian Y.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; BARACAT, Edmund C.; HAYASHIDA, Sylvia A. Y.; MACIEL, Gustavo A. R.; JORGE, Alexander A. L.; MENDONCA, Berenice B.
    Background/Aim: Primary ovarian insufficiency (POI) is characterized by primary or secondary amenorrhea, infertility, low estradiol levels, and increased gonadotropin levels. Most cases of POI remain unsolved even after exhaustive investigation. Here, we performed a targeted massively parallel sequencing to identify the genetic diagnosis of primary ovarian insufficiency (POI) in a Brazilian patient. Patient and methods: An adopted 21-year-old Brazilian woman with isolated POI was selected. A custom SureSelect(xT) DNA target enrichment panel was designed and sequenced on an Illumina NextSeq 500 sequencer. The variants were confirmed using Sanger sequencing. Results: Two rare heterozygous pathogenic variants in the STAG3 gene were identified in our patient. An unpublished 1-bp duplication c.291dupC (p.Asn98Glnfs*2) and one stop codon variant c.1950C > A (p.Tyr650*) were identified in the STAG3 gene. Both undescribed heterozygous variants were absent in the public databases [1000Genomes, Exome Aggregation Consortium (ExAC), National Heart, Lung, and Blood Institute Exome Variant Server (NHLBI/EVS), database of Single Nucleotide Polymorphisms (dbSNP), Genome Aggregation Database (gnomAD)], and Online Archive of Brazilian Mutations (ABraOM) databases. Moreover, neither heterozygous variants were found in 400 alleles from fertile Brazilian women screened by Sanger sequencing. The parents' DNA was not available to segregate these variants. Conclusion: Our results suggested that POI is caused by pathogenic compound heterozygous variants in the STAG3 gene, supporting the key role of the STAG3 gene in the etiology of primary ovarian insufficiency.
  • article
    Evidence for a Founder Effect of SDHB Exon 1 Deletion in Brazilian Patients With Paraganglioma
    (2023) FAGUNDES, Gustavo F. C.; FREITAS-CASTRO, Felipe; SANTANA, Lucas S.; AFONSO, Ana Caroline F.; PETENUCI, Janaina; FUNARI, Mariana F. A.; GUIMARAES, Augusto G.; LEDESMA, Felipe L.; PEREIRA, Maria Adelaide A.; VICTOR, Carolina R.; FERRARI, Marcela S. M.; COELHO, Fernando M. A.; SROUGI, Victor; TANNO, Fabio Y.; CHAMBO, Jose L.; LATRONICO, Ana Claudia; MENDONCA, Berenice B.; V, Maria Candida B. Fragoso; HOFF, Ana O.; ALMEIDA, Madson Q.
    Context Limited information is available concerning the genetic spectrum of pheochromocytoma and paraganglioma (PPGL) patients in South America. Germline SDHB large deletions are very rare worldwide, but most of the individuals harboring the SDHB exon 1 deletion originated from the Iberian Peninsula. Objective Our aim was to investigate the spectrum of SDHB genetic defects in a large cohort of Brazilian patients with PPGLs. Methods Genetic investigation of 155 index PPGL patients was performed by Sanger DNA sequencing, multiplex ligation-dependent probe amplification, and/or target next-generation sequencing panel. Common ancestrality was investigated by microsatellite genotyping with haplotype reconstruction, and analysis of deletion breakpoint. Results Among 155 index patients, heterozygous germline SDHB pathogenic or likely pathogenic variants were identified in 22 cases (14.2%). The heterozygous SDHB exon 1 complete deletion was the most frequent genetic defect in SDHB, identified in 8 out of 22 (36%) of patients. Haplotype analysis of 5 SDHB flanking microsatellite markers demonstrated a significant difference in haplotype frequencies in a case-control permutation test (P = 0.03). More precisely, 3 closer/informative microsatellites were shared by 6 out of 8 apparently unrelated cases (75%) (SDHB-GATA29A05-D1S2826-D1S2644 | SDHB-186-130-213), which was observed in only 1 chromosome (1/42) without SDHB exon 1 deletion (X-2 = 29.43; P < 0.001). Moreover, all cases with SDHB exon 1 deletion had the same gene breakpoint pattern of a 15 678 bp deletion previously described in the Iberian Peninsula, indicating a common origin. Conclusion The germline heterozygous SDHB exon 1 deletion was the most frequent genetic defect in the Brazilian PPGL cohort. Our findings demonstrated a founder effect for the SDHB exon 1 deletion in Brazilian patients with paragangliomas.
  • article 38 Citação(ões) na Scopus
    Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing
    (2019) HOMMA, Thais Kataoka; FREIRE, Bruna Lucheze; KAWAHIRA, Rachel Sayuri Honjo; DAUBER, Andrew; FUNARI, Mariana Ferreira de Assis; LERARIO, Antonio Marcondes; NISHI, Mirian Yumie; ALBUQUERQUE, Edoarda Vasco de; VASQUES, Gabriela de Andrade; COLLETT-SOLBERG, Paulo Ferrez; SUGAYAMA, Sofia Mizuho Miura; BERTOLA, Debora Romeo; KIM, Chong Ae; ARNHOLD, Ivo Jorge Prado; MALAQUIAS, Alexsandra Christianne; JORGE, Alexander Augusto de Lima
    Objective To perform a prospective genetic investigation using whole exome sequencing of a group of patients with syndromic short stature born small for gestational age of unknown cause. Study design For whole exome sequencing analysis, we selected 44 children born small for gestational age with persistent short stature, and additional features, such as dysmorphic face, major malformation, developmental delay, and/or intellectual disability. Seven patients had negative candidate gene testing based on clinical suspicion and 37 patients had syndromic conditions of unknown etiology. Results Of the 44 patients, 15 (34%) had pathogenic/likely pathogenic variants in genes already associated with growth disturbance: COL2A1 (n = 2), SRCAP (n = 2), AFF4, ACTG1, ANKRD11, BCL11B, BRCA1, CDKN1C, GINS1, INPP5K, KIF11, KMT2A, and POC1A (n = 1 each). Most of the genes found to be deleterious participate in fundamental cellular processes, such as cell replication and DNA repair. Conclusions The rarity and heterogeneity of syndromic short stature make the clinical diagnosis difficult. Whole exome sequencing allows the diagnosis of previously undiagnosed patients with syndromic short stature.
  • article 26 Citação(ões) na Scopus
    Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency
    (2020) FRANCA, Monica M.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; SANTOS, Mariza G.; NISHI, Mirian Y.; DOMENICE, Sorahia; MORAES, Daniela R.; COSTALONGA, Everlayny F.; MACIEL, Gustavo A. R.; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.
  • article 3 Citação(ões) na Scopus
    Diagnostic yield of a multigene sequencing approach in children classified as idiopathic short stature
    (2022) ANDRADE, Nathalia Liberatoscioli Menezes; FUNARI, Mariana Ferreira de Assis; MALAQUIAS, Alexsandra Christianne; COLLETT-SOLBERG, Paulo Ferrez; GOMES, Nathalia L. R. A.; SCALCO, Renata; DANTAS, Naiara Castelo Branco; REZENDE, Raissa C.; TIBURCIO, Angelica M. F. P.; SOUZA, Micheline A. R.; FREIRE, Bruna L.; V, Ana C. Krepischi; LONGUI, Carlos Alberto; LERARIO, Antonio Marcondes; ARNHOLD, Ivo J. P.; JORGE, Alexander A. L.; VASQUES, Gabriela Andrade
    ObjectiveMost children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methodsWe selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. ResultsWe identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS <= or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. ConclusionA multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
  • conferenceObject
    NOVEL LZTR1 GENE VARIANTS ASSOCIATED TO NOONAN SYNDROME AND GROWTH HORMONE DEFICIENCY
    (2017) NAKAGUMA, Marilena; JORGE, Alexander A. L.; MARIANA, Funari F. A.; ANTONIO, Lerario M.; FERNANDA, Correa A.; LUCIANI, Carvalho R. S.; BERENICE, Mendonca B.; ARNHOLD, Ivo J.
  • conferenceObject
    Prospective Genetic Analysis of Patients with Congenital Growth Hormone Deficiency by Massive Parallel Sequencing Using Target Gene Panel
    (2016) NAKAGUMA, M.; JORGE, A. Augusto de Lima; FUNARI, M. Ferreira de Assis; LERARIO, Marcondes A.; CARVALHO, L. Renata Silveira de; MENDONCA, B. Bilharinho de; ARNHOLD, I Jorge Prado
  • article 53 Citação(ões) na Scopus
    Multigene Sequencing Analysis of Children Born Small for Gestational Age With Isolated Short Stature
    (2019) FREIRE, Bruna L.; HOMMA, Thais K.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; VASQUES, Gabriela A.; MALAQUIAS, Alexsandra C.; ARNHOLD, Ivo J. P.; JORGE, Alexander A. L.
    Context: Patients born small for gestational age (SGA) who present with persistent short stature could have an underlying genetic etiology that will account for prenatal and postnatal growth impairment. We applied a unique massive parallel sequencing approach in cohort of patients with exclusively nonsyndromic SGA to simultaneously interrogate for clinically substantial genetic variants. Objective: To perform a genetic investigation of children with isolated short stature born SGA. Design: Screening by exome (n = 16) or targeted gene panel (n = 39) sequencing. Setting: Tertiary referral center for growth disorders. Patients and Methods: We selected 55 patients born SGA with persistent short stature without an identified cause of short stature. Main Outcome Measures: Frequency of pathogenic findings. Results: We identified heterozygous pathogenic or likely pathogenic genetic variants in 8 of 55 patients, all in genes already associated with growth disorders. Four of the genes are associated with growth plate development, IHH (n = 2), NPR2 (n = 2), SHOX (n = 1), and ACAN (n = 1), and two are involved in the RAS/MAPK pathway, PTPN11 (n = 1) and NF1 (n = 1). None of these patients had clinical findings that allowed for a clinical diagnosis. Seven patients were SGA only for length and one was SGA for both length and weight. Conclusion: These genomic approaches identified pathogenic or likely pathogenic genetic variants in 8 of 55 patients (15%). Six of the eight patients carried variants in genes associated with growth plate development, indicating that mild forms of skeletal dysplasia could be a cause of growth disorders in this group of patients.
  • article 3 Citação(ões) na Scopus
    Adult Height of Patients with SHOX Haploinsufficiency with or without GH Therapy: A Real-World Single-Center Study
    (2022) DANTAS, Naiara C. B.; FUNARI, Mariana F. A.; VASQUES, Gabriela A.; ANDRADE, Nathalia L. M.; REZENDE, Raissa C.; BRITO, Vinicius; SCALCO, Renata C.; ARNHOLD, Ivo J. P.; MENDONCA, Berenice B.; JORGE, Alexander A. L.
    Introduction: Isolated SHOX haploinsufficiency is a common monogenic cause of short stature. Few studies compare untreated and rhGH-treated patients up to adult height (AH). Our study highlights a growth pattern from childhood to AH in patients with SHOX haploinsufficiency and analyzes the real-world effectiveness of rhGH alone or plus GnRH analog (GnRHa). Methods: Forty-seven patients (18 untreated and 29 rhGH-treated) with SHOX haploinsufficiency were included in a longitudinal retrospective study. Adult height was attained in 13 untreated and 18 rhGH-treated (rhGH alone [n = 8] or plus GnRHa [n = 10]) patients. Results: The untreated group decreased height SDS from baseline to AH (-0.8 [-1.1; -0.4]), with an increase in the prevalence of short stature from 31% to 77%. Conversely, the rhGH-treated group had an improvement in height SDS from baseline to AH (0.6 [0.2; 0.6]; p < 0.001), with a reduction in the prevalence of short stature (from 61% to 28%). AH in the rhGH-treated patients was 1 SD (6.3 cm) taller than in untreated ones. Regarding the use of GnRHa, the subgroups (rhGH alone or plus GnRHa) attained similar AH, despite the higher prevalence of pubertal patients and worse AH prediction at the start of rhGH treatment in patients who used combined therapy. Conclusion: The use of rhGH treatment improves AH in patients with SHOX haploinsufficiency, preventing the loss of height potential during puberty. In peripubertal patients, the addition of GnRHa to rhGH allows AH attainment similar to the AH of patients who start rhGH alone in the prepubertal age. (C) 2022 S. Karger AG, Basel
  • article 9 Citação(ões) na Scopus
    Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes
    (2018) CORREA, Fernanda A.; JORGE, Alexander A. L.; NAKAGUMA, Marilena; CANTON, Ana P. M.; COSTA, Silvia S.; FUNARI, Mariana F.; LERARIO, Antonio M.; FRANCA, Marcela M.; CARVALHO, Luciani R.; KREPISCHI, Ana C. V.; ARNHOLD, Ivo J. P.; ROSENBERG, Carla; MENDONCA, Berenice B.
    ObjectivesThe aetiology of congenital hypopituitarism (CH) is unknown in most patients. Rare copy number variants (CNVs) have been implicated as the cause of genetic syndromes with previously unknown aetiology. Our aim was to study the presence of CNVs and their pathogenicity in patients with idiopathic CH associated with complex phenotypes. Design and PatientsWe selected 39 patients with syndromic CH for array-based comparative genomic hybridization (aCGH). Patients with pathogenic CNVs were also evaluated by whole exome sequencing. ResultsTwenty rare CNVs were detected in 19 patients. Among the identified rare CNVs, six were classified as benign, eleven as variants of uncertain clinical significance (VUS) and four as pathogenic. The three patients with pathogenic CNVs had combined pituitary hormone deficiencies, and the associated complex phenotypes were intellectual disabilities: trichorhinophalangeal type I syndrome (TRPS1) and developmental delay/intellectual disability with cardiac malformation, respectively. Patient one has a de novo 1.6-Mb deletion located at chromosome 3q13.31q13.32, which overlaps with the region of the 3q13.31 deletion syndrome. Patient two has a 10.5-Mb de novo deletion at 8q23.1q24.11, encompassing the TRPS1 gene; his phenotype is compatible with TRPS1. Patient three carries a chromosome translocation t(2p24.3;4q35.1) resulting in two terminal alterations: a 2p25.3p24.3 duplication of 14.7Mb and a 4-Mb deletion at 4q35.1q35.2. ConclusionsCopy number variants explained the phenotype in 8% of patients with hypopituitarism and additional complex phenotypes. This suggests that chromosomal alterations are an important contributor to syndromic hypopituitarism.