Outer Retinal Dysfunction on Multifocal Electroretinography May Help Differentiating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN NEUROLOGY, v.10, article ID 928, 11p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To evaluate the intermediate and outer retina of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using OCT and multifocal electroretinography (mf-ERG). Methods: Patients with MS (n = 30), NMOSD (n = 30), and healthy controls (n = 29) underwent visual field (VF), OCT, and mt-ERG testing. The eyes were distributed into 5 groups: MS with or without history of ON (MS+ON, MS-ON), NMOSD with or without ON (NMOSD+ON, NMOSD-ON), and controls. The thickness of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was measured. mf-ERG P1 and N1 responses were registered and grouped in 3 sets of rings. The groups were compared using GEE models, and effect size (ES) calculated. Results: Compared to controls, GCL and IPL thickness was significantly smaller in MS+ON (both p < 0.01), MS-ON (p < 0.01 and p = 0.015, respectively), NMOSD+ON (both p < 0.01) and NMOSD-ON (p = 0.03 and p = 0.018, respectively). ES was >0.80. mRNFL was smaller in three of the above groups (p < 0.01, p < 0.001, and p = 0.028; ES > 0.80) but not in MS-ON eyes (p = 0.18). No significant difference was observed for the remaining layers. Compared to controls, P1 and N1 peak times were shorter in MS (p-values in the range 0.049-0.002, ES < 0.50; and 0.049-0.010; ES < 0.50, respectively) but not in NMOSD. These abnormalities were strongly correlated with intermediate and outer retinal layer thickness. Conclusions: mf-ERG data suggest outer retinal abnormalities in MS, but not in NMOSD. Our results may help understand how the two conditions differ regarding retinal damage.
Palavras-chave
multiple sclerosis, neuromyelitis optica, electroretinogram, optical coherence tomography, retinal layers
Referências
  1. Akaishi T, 2017, J NEUROIMMUNOL, V313, P10, DOI 10.1016/j.jneuroim.2017.10.001
  2. Al-Louzi OA, 2016, MULT SCLER J, V22, P362, DOI 10.1177/1352458515590646
  3. Behbehani R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172120
  4. Bennett JL, 2015, MULT SCLER J, V21, P678, DOI 10.1177/1352458514567216
  5. Bennett JL, 2016, J NEURO-OPHTHALMOL, V36, P238, DOI 10.1097/WNO.0000000000000396
  6. Bertsch-Gout M, 2018, J NEUROL SCI, V384, P61, DOI 10.1016/j.jns.2017.11.017
  7. Bursell SE, 1996, INVEST OPHTH VIS SCI, V37, P886
  8. Calabresi PA, 2010, BRAIN, V133, P1575, DOI 10.1093/brain/awq133
  9. Cascavilla ML, 2018, ACTA OPHTHALMOL, V96, pe156, DOI 10.1111/aos.13557
  10. COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
  11. Fernandes DB, 2013, OPHTHALMOLOGY, V120, P387, DOI 10.1016/j.ophtha.2012.07.066
  12. Fernandes DB, 2012, J NEURO-OPHTHALMOL, V32, P102, DOI 10.1097/WNO.0b013e31823a9ebc
  13. Forooghian F, 2006, DOC OPHTHALMOL, V113, P123, DOI 10.1007/s10633-006-9022-0
  14. Fraser CL, 2011, DOC OPHTHALMOL, V123, P173, DOI 10.1007/s10633-011-9294-x
  15. Gelfand JM, 2013, JAMA NEUROL, V70, P629, DOI 10.1001/jamaneurol.2013.1832
  16. Gelfand JM, 2012, BRAIN, V135, P1786, DOI 10.1093/brain/aws098
  17. Green AJ, 2010, BRAIN, V133, P1591, DOI 10.1093/brain/awq080
  18. Gundogan FC, 2007, INVEST OPHTH VIS SCI, V48, P5773, DOI 10.1167/iovs.07-0834
  19. Gundogan FC, 2007, CLIN EXP OPHTHALMOL, V35, P32, DOI 10.1111/j.1442-9071.2006.01384.x
  20. Hanson JVM, 2018, INVEST OPHTH VIS SCI, V59, P549, DOI 10.1167/iovs.17-22821
  21. Hardin JW, 2002, GEN ESTIMATING EQUAT, DOI [10.1201/9781420035285, DOI 10.1201/9781420035285]
  22. Hokazono K, 2013, DOC OPHTHALMOL, V127, P201, DOI 10.1007/s10633-013-9401-2
  23. Hood DC, 2002, INVEST OPHTH VIS SCI, V43, P1673
  24. Hood DC, 2000, PROG RETIN EYE RES, V19, P607, DOI 10.1016/S1350-9462(00)00013-6
  25. Hood DC, 2012, DOC OPHTHALMOL, V124, P1, DOI 10.1007/s10633-011-9296-8
  26. IKEDA H, 1989, DOC OPHTHALMOL, V73, P387, DOI 10.1007/BF00154494
  27. IKEDA H, 1978, BRIT J OPHTHALMOL, V62, P227, DOI 10.1136/bjo.62.4.227
  28. Kim JT, 2016, J KOREAN MED SCI, V31, P783, DOI 10.3346/jkms.2016.31.5.783
  29. Klemp K, 2004, INVEST OPHTH VIS SCI, V45, P3812, DOI 10.1167/iovs.03-1260
  30. Lennon VA, 2004, LANCET, V364, P2106, DOI 10.1016/S0140-6736(04)17551-X
  31. Monteiro MLR, 2012, INVEST OPHTH VIS SCI, V53, P3959, DOI 10.1167/iovs.11-9324
  32. Newcombe J, 2008, BRAIN PATHOL, V18, P52, DOI 10.1111/j.1750-3639.2007.00101.x
  33. Parisi V, 1999, INVEST OPHTH VIS SCI, V40, P2520
  34. Polman CH, 2011, ANN NEUROL, V69, P292, DOI 10.1002/ana.22366
  35. Saidha S, 2011, MULT SCLER J, V17, P1449, DOI 10.1177/1352458511418630
  36. Saidha S, 2011, BRAIN, V134, P518, DOI 10.1093/brain/awq346
  37. Schippling S, 2015, MULT SCLER J, V21, P163, DOI 10.1177/1352458514538110
  38. Sotirchos ES, 2013, NEUROLOGY, V80, P1406, DOI 10.1212/WNL.0b013e31828c2f7a
  39. Sriram P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102546
  40. Stojanovic IR, 2014, J NEURAL TRANSM, V121, P945, DOI 10.1007/s00702-014-1188-0
  41. Tait MJ, 2008, TRENDS NEUROSCI, V31, P37, DOI 10.1016/j.tins.2007.11.003
  42. Tiedeman JS, 1998, OPHTHALMOLOGY, V105, P31, DOI 10.1016/S0161-6420(98)71029-1
  43. Tutka P, 2005, PHARMACOL REP, V57, P143
  44. Weinshenker BG, 2007, ARCH NEUROL-CHICAGO, V64, P899, DOI 10.1001/archneur.64.6.899
  45. Wingerchuk DM, 2006, NEUROLOGY, V66, P1485, DOI 10.1212/01.wnl.0000216139.44259.74
  46. Wingerchuk DM, 2015, NEUROLOGY, V85, P177, DOI 10.1212/WNL.0000000000001729