Outer Retinal Dysfunction on Multifocal Electroretinography May Help Differentiating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disorder

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorFILGUEIRAS, Thiago G.
dc.contributor.authorOYAMADA, Maria K.
dc.contributor.authorPRETI, Rony C.
dc.contributor.authorAPOSTOLOS-PEREIRA, Samira L.
dc.contributor.authorCALLEGARO, Dagoberto
dc.contributor.authorMONTEIRO, Mario L. R.
dc.date.accessioned2019-09-23T14:19:03Z
dc.date.available2019-09-23T14:19:03Z
dc.date.issued2019
dc.description.abstractPurpose: To evaluate the intermediate and outer retina of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using OCT and multifocal electroretinography (mf-ERG). Methods: Patients with MS (n = 30), NMOSD (n = 30), and healthy controls (n = 29) underwent visual field (VF), OCT, and mt-ERG testing. The eyes were distributed into 5 groups: MS with or without history of ON (MS+ON, MS-ON), NMOSD with or without ON (NMOSD+ON, NMOSD-ON), and controls. The thickness of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was measured. mf-ERG P1 and N1 responses were registered and grouped in 3 sets of rings. The groups were compared using GEE models, and effect size (ES) calculated. Results: Compared to controls, GCL and IPL thickness was significantly smaller in MS+ON (both p < 0.01), MS-ON (p < 0.01 and p = 0.015, respectively), NMOSD+ON (both p < 0.01) and NMOSD-ON (p = 0.03 and p = 0.018, respectively). ES was >0.80. mRNFL was smaller in three of the above groups (p < 0.01, p < 0.001, and p = 0.028; ES > 0.80) but not in MS-ON eyes (p = 0.18). No significant difference was observed for the remaining layers. Compared to controls, P1 and N1 peak times were shorter in MS (p-values in the range 0.049-0.002, ES < 0.50; and 0.049-0.010; ES < 0.50, respectively) but not in NMOSD. These abnormalities were strongly correlated with intermediate and outer retinal layer thickness. Conclusions: mf-ERG data suggest outer retinal abnormalities in MS, but not in NMOSD. Our results may help understand how the two conditions differ regarding retinal damage.eng
dc.description.indexPubMedeng
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2013/26585-5]
dc.description.sponsorshipCAPES-Coordenacao de Aperfeicoamento de Nivel Superior, Brasilia, Brazil
dc.description.sponsorshipCNPq-Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [307393/2014-3]
dc.identifier.citationFRONTIERS IN NEUROLOGY, v.10, article ID 928, 11p, 2019
dc.identifier.doi10.3389/fneur.2019.00928
dc.identifier.issn1664-2295
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/33518
dc.language.isoeng
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Neurology
dc.rightsopenAccesseng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.subjectmultiple sclerosiseng
dc.subjectneuromyelitis opticaeng
dc.subjectelectroretinogrameng
dc.subjectoptical coherence tomographyeng
dc.subjectretinal layerseng
dc.subject.otherdiagnostic-criteriaeng
dc.subject.othercoherence tomographyeng
dc.subject.otherabnormalitieseng
dc.subject.otherpathologyeng
dc.subject.otherneuritiseng
dc.subject.otherdiseaseeng
dc.subject.otherhyperglycemiaeng
dc.subject.otherglutamateeng
dc.subject.otheratrophyeng
dc.subject.otherocteng
dc.subject.wosClinical Neurologyeng
dc.subject.wosNeuroscienceseng
dc.titleOuter Retinal Dysfunction on Multifocal Electroretinography May Help Differentiating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disordereng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.citation.scopus10
hcfmusp.contributor.author-fmusphcTHIAGO GOMES FILGUEIRAS
hcfmusp.contributor.author-fmusphcMARIA KIYOKO OYAMADA
hcfmusp.contributor.author-fmusphcRONY CARLOS PRETI
hcfmusp.contributor.author-fmusphcSAMIRA LUISA DOS APOSTOLOS PEREIRA
hcfmusp.contributor.author-fmusphcDAGOBERTO CALLEGARO
hcfmusp.contributor.author-fmusphcMARIO LUIZ RIBEIRO MONTEIRO
hcfmusp.description.articlenumber928
hcfmusp.description.volume10
hcfmusp.origemWOS
hcfmusp.origem.pubmed31507527
hcfmusp.origem.scopus2-s2.0-85071724307
hcfmusp.origem.wosWOS:000482824200003
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAkaishi T, 2017, J NEUROIMMUNOL, V313, P10, DOI 10.1016/j.jneuroim.2017.10.001eng
hcfmusp.relation.referenceAl-Louzi OA, 2016, MULT SCLER J, V22, P362, DOI 10.1177/1352458515590646eng
hcfmusp.relation.referenceBehbehani R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172120eng
hcfmusp.relation.referenceBennett JL, 2015, MULT SCLER J, V21, P678, DOI 10.1177/1352458514567216eng
hcfmusp.relation.referenceBennett JL, 2016, J NEURO-OPHTHALMOL, V36, P238, DOI 10.1097/WNO.0000000000000396eng
hcfmusp.relation.referenceBertsch-Gout M, 2018, J NEUROL SCI, V384, P61, DOI 10.1016/j.jns.2017.11.017eng
hcfmusp.relation.referenceBursell SE, 1996, INVEST OPHTH VIS SCI, V37, P886eng
hcfmusp.relation.referenceCalabresi PA, 2010, BRAIN, V133, P1575, DOI 10.1093/brain/awq133eng
hcfmusp.relation.referenceCascavilla ML, 2018, ACTA OPHTHALMOL, V96, pe156, DOI 10.1111/aos.13557eng
hcfmusp.relation.referenceCOHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155eng
hcfmusp.relation.referenceFernandes DB, 2013, OPHTHALMOLOGY, V120, P387, DOI 10.1016/j.ophtha.2012.07.066eng
hcfmusp.relation.referenceFernandes DB, 2012, J NEURO-OPHTHALMOL, V32, P102, DOI 10.1097/WNO.0b013e31823a9ebceng
hcfmusp.relation.referenceForooghian F, 2006, DOC OPHTHALMOL, V113, P123, DOI 10.1007/s10633-006-9022-0eng
hcfmusp.relation.referenceFraser CL, 2011, DOC OPHTHALMOL, V123, P173, DOI 10.1007/s10633-011-9294-xeng
hcfmusp.relation.referenceGelfand JM, 2013, JAMA NEUROL, V70, P629, DOI 10.1001/jamaneurol.2013.1832eng
hcfmusp.relation.referenceGelfand JM, 2012, BRAIN, V135, P1786, DOI 10.1093/brain/aws098eng
hcfmusp.relation.referenceGreen AJ, 2010, BRAIN, V133, P1591, DOI 10.1093/brain/awq080eng
hcfmusp.relation.referenceGundogan FC, 2007, INVEST OPHTH VIS SCI, V48, P5773, DOI 10.1167/iovs.07-0834eng
hcfmusp.relation.referenceGundogan FC, 2007, CLIN EXP OPHTHALMOL, V35, P32, DOI 10.1111/j.1442-9071.2006.01384.xeng
hcfmusp.relation.referenceHanson JVM, 2018, INVEST OPHTH VIS SCI, V59, P549, DOI 10.1167/iovs.17-22821eng
hcfmusp.relation.referenceHardin JW, 2002, GEN ESTIMATING EQUAT, DOI [10.1201/9781420035285, DOI 10.1201/9781420035285]eng
hcfmusp.relation.referenceHokazono K, 2013, DOC OPHTHALMOL, V127, P201, DOI 10.1007/s10633-013-9401-2eng
hcfmusp.relation.referenceHood DC, 2002, INVEST OPHTH VIS SCI, V43, P1673eng
hcfmusp.relation.referenceHood DC, 2000, PROG RETIN EYE RES, V19, P607, DOI 10.1016/S1350-9462(00)00013-6eng
hcfmusp.relation.referenceHood DC, 2012, DOC OPHTHALMOL, V124, P1, DOI 10.1007/s10633-011-9296-8eng
hcfmusp.relation.referenceIKEDA H, 1989, DOC OPHTHALMOL, V73, P387, DOI 10.1007/BF00154494eng
hcfmusp.relation.referenceIKEDA H, 1978, BRIT J OPHTHALMOL, V62, P227, DOI 10.1136/bjo.62.4.227eng
hcfmusp.relation.referenceKim JT, 2016, J KOREAN MED SCI, V31, P783, DOI 10.3346/jkms.2016.31.5.783eng
hcfmusp.relation.referenceKlemp K, 2004, INVEST OPHTH VIS SCI, V45, P3812, DOI 10.1167/iovs.03-1260eng
hcfmusp.relation.referenceLennon VA, 2004, LANCET, V364, P2106, DOI 10.1016/S0140-6736(04)17551-Xeng
hcfmusp.relation.referenceMonteiro MLR, 2012, INVEST OPHTH VIS SCI, V53, P3959, DOI 10.1167/iovs.11-9324eng
hcfmusp.relation.referenceNewcombe J, 2008, BRAIN PATHOL, V18, P52, DOI 10.1111/j.1750-3639.2007.00101.xeng
hcfmusp.relation.referenceParisi V, 1999, INVEST OPHTH VIS SCI, V40, P2520eng
hcfmusp.relation.referencePolman CH, 2011, ANN NEUROL, V69, P292, DOI 10.1002/ana.22366eng
hcfmusp.relation.referenceSaidha S, 2011, MULT SCLER J, V17, P1449, DOI 10.1177/1352458511418630eng
hcfmusp.relation.referenceSaidha S, 2011, BRAIN, V134, P518, DOI 10.1093/brain/awq346eng
hcfmusp.relation.referenceSchippling S, 2015, MULT SCLER J, V21, P163, DOI 10.1177/1352458514538110eng
hcfmusp.relation.referenceSotirchos ES, 2013, NEUROLOGY, V80, P1406, DOI 10.1212/WNL.0b013e31828c2f7aeng
hcfmusp.relation.referenceSriram P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102546eng
hcfmusp.relation.referenceStojanovic IR, 2014, J NEURAL TRANSM, V121, P945, DOI 10.1007/s00702-014-1188-0eng
hcfmusp.relation.referenceTait MJ, 2008, TRENDS NEUROSCI, V31, P37, DOI 10.1016/j.tins.2007.11.003eng
hcfmusp.relation.referenceTiedeman JS, 1998, OPHTHALMOLOGY, V105, P31, DOI 10.1016/S0161-6420(98)71029-1eng
hcfmusp.relation.referenceTutka P, 2005, PHARMACOL REP, V57, P143eng
hcfmusp.relation.referenceWeinshenker BG, 2007, ARCH NEUROL-CHICAGO, V64, P899, DOI 10.1001/archneur.64.6.899eng
hcfmusp.relation.referenceWingerchuk DM, 2006, NEUROLOGY, V66, P1485, DOI 10.1212/01.wnl.0000216139.44259.74eng
hcfmusp.relation.referenceWingerchuk DM, 2015, NEUROLOGY, V85, P177, DOI 10.1212/WNL.0000000000001729eng
hcfmusp.scopus.lastupdate2024-06-09
relation.isAuthorOfPublicationecbafc85-f165-4e9b-a247-2910ecc9191b
relation.isAuthorOfPublicationbc2e0e49-03a2-4e33-9d0e-02d7f2d462c2
relation.isAuthorOfPublication043045f8-a0ae-47c9-861b-7a75c9cdee90
relation.isAuthorOfPublication56762958-32b0-4f44-aa16-c4447290209b
relation.isAuthorOfPublicationd4c82f1a-7fad-4f17-a653-10dd769f21bc
relation.isAuthorOfPublication49360274-203b-489e-a263-d0aba4cb5be3
relation.isAuthorOfPublication.latestForDiscoveryecbafc85-f165-4e9b-a247-2910ecc9191b
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_FILGUEIRAS_Outer_Retinal_Dysfunction_on_Multifocal_Electroretinography_May_Help_2019.PDF
Tamanho:
1.15 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)