Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: A preliminary report

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
IMPACT JOURNALS LLC
Citação
ONCOTARGET, v.9, n.18, p.14160-14174, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a > 50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy. © Favero et al.
Palavras-chave
7-ketocholesterol, Cell death, LDL receptor, Melanoma, Nanoemulsion
Referências
  1. Kulig, W., Cwiklik, L., Jurkiewicz, P., Rog, T., Vattulainen, I., Cholesterol oxidation products and their biological importance (2016) Chem Phys Lipids, 199, pp. 144-160
  2. Zerbinati, C., Iuliano, L., Cholesterol and related sterols autoxidation (2017) Free Radic Biol Med, 111, pp. 151-155
  3. Jusakul, A., Yongvanit, P., Loilome, W., Namwat, N., Kuver, R., Mechanisms of oxysterol-induced carcinogenesis (2011) Lipids Health Dis, 10, p. 44
  4. Ruiz, J.L., Fernandes, L.R., Levy, D., Bydlowski, S.P., Interrelationship between ATP-binding cassette transporters and oxysterols (2013) Biochem Pharmacol, 86, pp. 80-88
  5. Levy, D., Ruiz, J.L., Celestino, A.T., Silva, S.F., Ferreira, A.K., Isaac, C., Bydlowski, S.P., Short-term effects of 7-ketocholesterol on human adipose tissue mesenchymal stem cells in vitro (2014) Biochem Biophys Res Commun, 446, pp. 720-725
  6. Mutemberezi, V., Guillemot-Legris, O., Muccioli, G.G., Oxysterols: from cholesterol metabolites to key mediators (2016) Prog Lipid Res, 64, pp. 152-169
  7. O'Callaghan, Y.C., Woods, J.A., O'Brien, N.M., Comparative study of the cytotoxicity and apoptosis-inducing potential of commonly occurring oxysterols (2001) Cell Biol Toxicol, 17, pp. 127-137
  8. Nury, T., Zarrouk, A., Mackrill, J.J., Samadi, M., Durand, P., Riedinger, J.M., Doria, M., Hammami, M., Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: protective effects of a-tocopherol and docosahexaenoic acid (DHA
  9. C22:6n-3) (2015) Steroids, 99, pp. 194-203
  10. Berthier, A., Lemaire-Ewing, S., Prunet, C., Montange, T., Vejux, A., Pais de Barros, J.P., Monier, S., Néel, D., 7-Ketocholesterol-induced apoptosis. Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways (2005) FEBS J, 272, pp. 3093-3104
  11. Prunet, C., Lemaire-Ewing, S., Ménétrier, F., Néel, D., Lizard, G., Lizard, G., Activation of caspase-3-dependent andindependent pathways during 7-ketocholesterol-and 7betahydroxycholesterol-induced cell death: a morphological and biochemical study (2005) J Biochem Mol Toxicol, 19, pp. 311-326
  12. Silva, S.F., Levy, D., Ruiz, J.L., de Melo, T.C., Isaac, C., Fidelis, M.L., Rodrigues, A., Bydlowski, S.P., Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death (2017) J Steroid Biochem Mol Biol, 169, pp. 164-175
  13. Rosa Fernandes, L., Stern, A.C., Cavaglieri, R.C., Nogueira, F.C., Domont, G., Palmisano, G., Bydlowski, S.P., 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR 1 mechanism (2017) J Proteomics, 151, pp. 12-23
  14. Silvente-Poirot, S., Poirot, M., Cholesterol epoxide hydrolase and cancer (2012) Curr Opin Pharmacol, 12, pp. 696-703
  15. Poirot, M., Silvente-Poirot, S., Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer (2013) Biochimie, 95, pp. 622-631
  16. Kloudova, A., Guengerich, F.P., Soucek, P., The role of oxysterols in human cancer (2017) Trends Endocrinol Metab, 28, pp. 485-496
  17. Pfisterer, S.G., Peränen, J., Ikonen, E., LDL-cholesterol transport to the endoplasmic reticulum: current concepts (2016) Curr Opin Lipidol, 27, pp. 282-287
  18. Ho, Y.K., Smith, R.G., Brown, M.S., Goldstein, J.L., Lowdensity lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells (1978) Blood, 52, pp. 1099-1114
  19. Kuzu, O.F., Noory, M.A., Robertson, G.P., The role of cholesterol in cancer (2016) Cancer Res, 76, pp. 2063-2070
  20. Vitols, S., Angelin, B., Ericsson, S., Gahrton, G., Juliusson, G., Masquelier, M., Paul, C., Söderberg-Reid, K., Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy (1990) Proc Natl Acad Sci USA, 87, pp. 2598-2602
  21. Dubowchik, G.M., Firestone, R.A., Improved cytotoxicity of antitumor compounds deliverable by the LDL pathway (1995) Bioconjug Chem, 6, pp. 427-439
  22. Ye, J., Xia, X., Dong, W., Hao, H., Meng, L., Yang, Y., Wang, R., Liu, Y., Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines (2016) Int J Nanomedicine, 11, pp. 4125-4140
  23. Maranhão, R.C., Cesar, T.B., Pedroso-Mariani, S.R., Hirata, M.H., Mesquita, C.H., Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein (1993) Lipids, 28, pp. 691-696
  24. Maranhão, R.C., Garicochea, B., Silva, E.L., Dorlhiac-Llacer, P., Cadena, S.M., Coelho, I.J., Meneghetti, J.C., Chamone, D.A., Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia (1994) Cancer Res, 54, pp. 4660-4666
  25. Hungria, V.T., Latrilha, M.C., Rodrigues, D.G., Bydlowski, S.P., Chiattone, C.S., Maranhão, R.C., Metabolism of a cholesterolrich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for the treatment of the disease (2004) Cancer Chemother Pharmacol, 53, pp. 51-60
  26. Rodrigues, D.G., Maria, D.A., Fernandes, D.C., Valduga, C.J., Couto, R.D., Ibañez, O.C., Maranhão, R.C., Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies (2005) Cancer Chemother Pharmacol, 55, pp. 565-576
  27. Mendes, S., Graziani, S.R., Vitório, T.S., Padoveze, A.F., Hegg, R., Bydlowski, S.P., Maranhão, R.C., Uptake by breast carcinoma of a lipidic nanoemulsion after intralesional injection into the patients: a new strategy for neoadjuvant chemotherapy (2009) Gynecol Oncol, 112, pp. 400-404
  28. Favero, G.M., Maranhão, R.C., Maria, D.A., Levy, D., Bydlowski, S.P., Synthetic nanoemulsion resembling a protein-free model of 7-ketocholesterol containing low density lipoprotein: In vitro and in vivo studies (2010) Biol Res, 43, pp. 439-444
  29. Giovannini, C., Matarrese, P., Scazzocchio, B., Sanchez, M., Masella, R., Malorni, W., Mitochondria hyperpolarization is an early event in oxidized low-density lipoprotein-induced apoptosis in Caco-2 intestinal cells (2002) FEBS Lett, 523, pp. 200-206
  30. Sola, B., Poirot, M., de Medina, P., Bustany, S., Marsaud, V., Silvente-Poirot, S., Renoir, J.M., Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism (2013) Oncotarget, 4, pp. 911-922. , https://doi.org/10.18632/oncotarget.1066
  31. Bydlowski, S.P., Yunker, R.L., Subbiah, M.T., Ontogeny of 6-keto-PGF1 alpha synthesis in rabbit aorta and the effect of premature weaning (1987) Am J Physiol, 252, pp. H14-H21
  32. Bydlowski, S.P., Yunker, R.L., Rymaszewski, Z., Subbiah, M.T., Coffee extracts inhibit platelet aggregation in vivo and in vitro (1987) Int J Vitam Nutr Res, 57, pp. 217-223
  33. Ferreira, A.K., Freitas, V.M., Levy, D., Ruiz, J.L., Bydlowski, S.P., Rici, R.E., Filho, O.M., Maria, D.A., Antiangiogenic and anti-metastatic activity of synthetic phosphoethanolamine (2013) PLoS One, 8
  34. Huang, C., Freter, C., Lipid metabolism, apoptosis and cancer therapy (2015) Int J Mol Sci, 16, pp. 924-949
  35. de Weille, J., Fabre, C., Bakalara, N., Oxysterols in cancer cell proliferation and death (2013) Biochem Pharmacol, 86, pp. 154-160
  36. Luu, W., Sharpe, L.J., Capell-Hattam, I., Gelissen, I.C., Brown, A.J., Oxysterols: old tale, new twists (2016) Annu Rev Pharmacol Toxicol, 56, pp. 447-467
  37. Nury, T., Zarrouk, A., Vejux, A., Doria, M., Riedinger, J.M., Delage-Mourroux, R., Lizard, G., Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: Impairment by a-tocopherol (2014) Biochem Biophys Res Commun, 446, pp. 714-719
  38. Pedruzzi, E., Guichard, C., Ollivier, V., Driss, F., Fay, M., Prunet, C., Marie, J.C., Vandewalle, A., NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells (2004) Mol Cell Biol, 24, pp. 10703-10717
  39. Poirot, M., Silvente-Poirot, S., Oxysterols and related sterols: Implications in pharmacology and pathophysiology (2013) Biochem Pharmacol, 86, pp. 1-2
  40. Chang, M.C., Chen, Y.J., Liou, E.J., Tseng, W.Y., Chan, C.P., Lin, H.J., Liao, W.C., Jeng, J.H., 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells (2016) Oncotarget, 7, pp. 74473-74483. , https://doi.org/10.18632/oncotarget.12578
  41. Levy, D., de Melo, T.C., Ruiz, J.L., Bydlowski, S.P., Oxysterols and mesenchymal stem cell biology (2017) Chem Phys Lipids, 207, pp. 223-230
  42. Rosa-Fernandes, L., Maselli, L.M., Maeda, N.Y., Palmisano, G., Bydlowski, S.P., Outside-in, inside-ou. Proteomic analysis of endothelial stress mediated by 7-ketocholesterol (2017) Chem Phys Lipids, 207, pp. 231-238
  43. Mo, Z.C., Ren, K., Liu, X., Tang, Z.L., Yi, G.H., A high-density lipoprotein-mediated drug delivery system (2016) Adv Drug Deliv Rev, 106, pp. 132-147
  44. Su, H.T., Li, X., Liang, D.S., Qi, X.R., Synthetic low-density lipoprotein (sLDL) selectively delivers paclitaxel to tumor with low systemic toxicity (2016) Oncotarget, 7, pp. 51535-51552. , https://doi.org/10.18632/oncotarget.10493
  45. McMahon, K.M., Scielzo, C., Angeloni, N.L., Deiss-Yehiely, E., Scarfo, L., Ranghetti, P., Ma, S., Ghia, P., Synthetic highdensity lipoproteins as targeted monotherapy for chronic lymphocytic leukemia (2017) Oncotarget, 8, pp. 11219-11227. , https://doi.org/10.18632/oncotarget.14494
  46. Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C., Analysis of nanoparticle delivery to tumours (2016) Nature Rev Mater, 1, pp. 1-12
  47. Pinheiro, K.V., Hungria, V.T., Ficker, E.S., Valduga, C.J., Mesquita, C.H., Maranhão, R.C., Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin's and non-Hodgkin's lymphoma and a preliminary study on the toxicity of etoposide associated with LDE (2006) Cancer Chemother Pharmacol, 57, pp. 624-630
  48. Pires, L.A., Hegg, R., Valduga, C.J., Graziani, S.R., Rodrigues, D.G., Maranhão, R.C., Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study (2009) Cancer Chemother Pharmacol, 63, pp. 281-287
  49. Biasi, F., Leonarduzzi, G., Vizio, B., Zanetti, D., Sevanian, A., Sottero, B., Verde, V., Poli, G., Oxysterol mixtures prevent proapoptotic effects of 7-ketocholesterol in macrophages: implications for proatherogenic gene modulation (2004) FASEB J, 18, pp. 693-695
  50. Leonarduzzi, G., Biasi, F., Chiarpotto, E., Poli, G., Trojan horselike behavior of a biologically representative mixture of oxysterols (2004) Mol Aspects Med, 25, pp. 155-167
  51. Miguet-Alfonsi, C., Prunet, C., Monier, S., Bessède, G., Lemaire-Ewing, S., Berthier, A., Ménétrier, F., Lizard, G., Analysis of oxidative processes and of myelin figures formation before and after the loss of mitochondrial transmembrane potential during 7β-hydroxycholesterol and 7-ketocholesterol-induced apoptosis: comparison with various pro-apoptotic chemicals (2002) Biochem Pharmacol, 64, pp. 527-541
  52. Takano, K., Sato, K., Negishi, Y., Aramaki, Y., Involvement of actin cytoskeleton in macrophage apoptosis induced by cationic liposomes (2012) Arch Biochem Biophys, 518, pp. 89-94
  53. Jeyaraju, D.V., Hurren, R., Wang, X., MacLean, N., Gronda, M., Shamas-Din, A., Minden, M.D., Schimmer, A.D., A novel isoflavone, ME-344, targets the cytoskeleton in acute myeloid leukemia (2016) Oncotarget, 7, pp. 49777-49785. , https://doi.org/10.18632/oncotarget.10446
  54. Joo, E.E., Yamada, K.M., Post-polymerization crosstalk between the actin cytoskeleton and microtubule network (2016) Bioarchitecture, 6, pp. 53-59
  55. Lizard, G., Moisant, M., Cordelet, C., Monier, S., Gambert, P., Lagrost, L., Induction of similar features of apoptosis in human and bovine vascular endothelial cells treated by 7-ketocholesterol (1997) J Pathol, 183, pp. 330-338
  56. Huot, J., Houle, F., Marceau, F., Landry, J., Oxidative stressinduced actin reorganization mediated by the p38 mitogenactivated protein kinase/heat shock protein 27 pathway in vascular endothelial cells (1997) Circ Res, 80, pp. 383-392
  57. Zahm, J.M., Baconnais, S., Monier, S., Bonnet, N., Bessède, G., Gambert, P., Puchelle, E., Lizard, G., Chronology of cellular alterations during 7-ketocholesterol-induced cell death on A7R5 rat smooth muscle cells: Analysis by time lapse-video microscopy and conventional fluorescence microscopy (2003) Cytometry A, 52, pp. 57-69
  58. Lopes, A.A., Peranovich, T.M., Maeda, N.Y., Bydlowski, S.P., Differential effects of enzymatic treatments on the storage and secretion of von Willebrand factor by human endothelial cells (2001) Thromb Res, 101, pp. 291-297
  59. Janz, F.L., Debes, A.A., Cavaglieri, R.C., Duarte, S.A., Romão, C.M., Morón, A.F., Zugaib, M., Bydlowski, S.P., Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation (2012) J Biomed Biotechnol, 2012
  60. Goldstein, J.L., Basu, S.K., Brown, M.S., Receptor-mediated endocytosis of low-density lipoprotein in cultured cells (1983) Methods Enzymol, 98, pp. 241-260
  61. Vindelov, L.L., Christensen, I.J., Nissen, N.I., A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis (1983) Cytometry, 3, pp. 323-327
  62. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G., Franceschi, C., A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) (1993) Biochem Biophys Res Commun, 197, pp. 40-45
  63. Biederbick, A., Kern, H.F., Elsasser, H.P., Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles (1995) Eur J Cell Biol, 66, pp. 3-14
  64. Luo, H., Lu, L., Yang, F., Wang, L., Yang, X., Luo, Q., Zhang, Z., Nasopharyngeal cancer-specific therapy based on fusion peptide-functionalized lipid nanoparticles (2014) ACS Nano, 8, pp. 4334-4347