Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

Carregando...
Imagem de Miniatura
Citações na Scopus
111
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PSYCHIATRIC PUBLISHING, INC
Autores
YU, Dongmei
MATHEWS, Carol A.
SCHARF, Jeremiah M.
NEALE, Benjamin M.
DAVIS, Lea K.
GAMAZON, Eric R.
DERKS, Eske M.
EVANS, Patrick
EDLUND, Christopher K.
CRANE, Jacquelyn
Citação
AMERICAN JOURNAL OF PSYCHIATRY, v.172, n.1, p.82-93, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. Method: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. Results: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders Polygenic score analyses identified a significant polygenic component for OCD (p=2x10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). Conclusions: Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring burette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.
Palavras-chave
Referências
  1. Bloch MH, 2006, MOL PSYCHIATR, V11, P622, DOI 10.1038/sj.mp.4001823
  2. Bolton D, 2007, PSYCHOL MED, V37, P39, DOI 10.1017/S0033291706008816
  3. Cavallini MC, 1999, AM J MED GENET, V88, P38, DOI 10.1002/(SICI)1096-8628(19990205)88:1<38::AID-AJMG7>3.0.CO;2-#
  4. Como Peter G, 2005, Adv Neurol, V96, P249
  5. Altshuler D, 2010, NATURE, V467, P1061, DOI 10.1038/nature09534
  6. Davis LK, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003864
  7. do Rosario-Campos MC, 2005, AM J MED GENET B, V136B, P92, DOI 10.1002/ajmg.b.30149
  8. Dudbridge F, 2008, GENET EPIDEMIOL, V32, P227, DOI 10.1002/gepi.20297
  9. Ercan-Sencicek AG, 2010, NEW ENGL J MED, V362, P1901, DOI 10.1056/NEJMoa0907006
  10. Grados MA, 2008, BIOL PSYCHIAT, V64, P219, DOI 10.1016/j.biopsych.2008.01.019
  11. Howie BN, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000529
  12. Kovas Y, 2006, TRENDS COGN SCI, V10, P198, DOI 10.1016/j.tics.2006.03.001
  13. LECKMAN JF, 1994, ANXIETY, V1, P208
  14. March JS, 2007, BIOL PSYCHIAT, V61, P344, DOI 10.1016/j.biopsych.2006.09.035
  15. Mathews CA, 2011, J AM ACAD CHILD PSY, V50, P46, DOI 10.1016/j.jaac.2010.10.004
  16. Miguel EC, 2000, J CLIN PSYCHIAT, V61, P150
  17. O'Roak BJ, 2010, MOL PSYCHIATR, V15, P447, DOI 10.1038/mp.2009.105
  18. O'Rourke JA, 2009, J PSYCHOSOM RES, V67, P533, DOI 10.1016/j.jpsychores.2009.06.006
  19. Pauls DL, 2008, AM J MED GENET C, V148C, P133, DOI 10.1002/ajmg.c.30168
  20. PAULS DL, 1986, ARCH GEN PSYCHIAT, V43, P1180
  21. PAULS DL, 1992, PSYCHIAT CLIN N AM, V15, P759
  22. Pe'er I, 2008, GENET EPIDEMIOL, V32, P381, DOI 10.1002/gepi.20303
  23. Price AL, 2006, NAT GENET, V38, P904, DOI 10.1038/ng1847
  24. Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011, NAT GENET, V43, P977
  25. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  26. Purcell SM, 2009, NATURE, V460, P748, DOI 10.1038/nature08185
  27. Rauch S L, 2001, Adv Neurol, V85, P207
  28. Scharf JM, 2010, NEUROLOGY, V74, P1564, DOI 10.1212/WNL.0b013e3181e24161
  29. Scharf JM, 2013, MOL PSYCHIATR, V18, P721, DOI 10.1038/mp.2012.69
  30. Sheppard DM, 1999, CLIN PSYCHOL REV, V19, P531, DOI 10.1016/S0272-7358(98)00059-2
  31. Stewart SE, 2013, MOL PSYCHIATR, V18, P788, DOI 10.1038/mp.2012.85
  32. Sundaram SK, 2010, NEUROLOGY, V74, P1583, DOI 10.1212/WNL.0b013e3181e0f147
  33. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011, NAT GENET, V43, P969, DOI 10.1038/ng.940
  34. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  35. Zhang DD, 2010, AM J HUM GENET, V86, P411, DOI 10.1016/j.ajhg.2010.02.005