The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorNETO, Jose Cesar Rosa
dc.contributor.authorCALDER, Philip C.
dc.contributor.authorCURI, Rui
dc.contributor.authorNEWSHOLME, Philip
dc.contributor.authorSETHI, Jaswinder K.
dc.contributor.authorSILVEIRA, Loreana S.
dc.date.accessioned2021-10-20T14:08:04Z
dc.date.available2021-10-20T14:08:04Z
dc.date.issued2021
dc.description.abstractMacrophages and lymphocytes demonstrate metabolic plasticity, which is dependent partly on their state of activation and partly on the availability of various energy yielding and biosynthetic substrates (fatty acids, glucose, and amino acids). These substrates are essential to fuel-based metabolic reprogramming that supports optimal immune function, including the inflammatory response. In this review, we will focus on metabolism in macrophages and lymphocytes and discuss the role of fatty acids in governing the phenotype, activation, and functional status of these important cells. We summarize the current understanding of the pathways of fatty acid metabolism and related mechanisms of action and also explore possible new perspectives in this exciting area of research.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipFundacao a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [FAPESP: 2019/09679-2, FAPESP: 2019/09854-9]
dc.identifier.citationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.22, n.16, article ID 8460, 16p, 2021
dc.identifier.doi10.3390/ijms22168460
dc.identifier.eissn1422-0067
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/42614
dc.language.isoeng
dc.publisherMDPIeng
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.rightsopenAccesseng
dc.rights.holderCopyright MDPIeng
dc.subjectimmune cellseng
dc.subjectlipidseng
dc.subjectfatty acidseng
dc.subjectmetabolismeng
dc.subjectleukocyteseng
dc.subjectmacrophageseng
dc.subjectlymphocyteseng
dc.subjectinflammationeng
dc.subjectcytokineseng
dc.subject.othert-cell memoryeng
dc.subject.othernf-kappa-beng
dc.subject.othermetabolic-regulationeng
dc.subject.otherperipheral-bloodeng
dc.subject.otherglucose-metabolismeng
dc.subject.otherppar-gammaeng
dc.subject.otherinflammationeng
dc.subject.otherobeseeng
dc.subject.otheractivationeng
dc.subject.otherexpressioneng
dc.subject.wosBiochemistry & Molecular Biologyeng
dc.subject.wosChemistry, Multidisciplinaryeng
dc.titleThe Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocyteseng
dc.typearticleeng
dc.type.categoryrevieweng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryAustrália
hcfmusp.affiliation.countryInglaterra
hcfmusp.affiliation.countryisogb
hcfmusp.affiliation.countryisoau
hcfmusp.author.externalCALDER, Philip C.:Univ Southampton, Fac Med, Sch Human Dev & Hlth, Southampton SO16 6YD, Hants, England; Univ Southampton, Natl Inst Hlth Res Southampton Biomed Res Ctr, Southampton SO16 6YD, Hants, England; Univ Hosp Southampton Natl Hlth Serv NHS Fdn Trus, Southampton SO16 6YD, Hants, England; Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
hcfmusp.author.externalCURI, Rui:Univ Cruzeiro Sul, Interdisciplinary Postgrad Program Hlth Sci, BR-01506000 Sao Paulo, Brazil
hcfmusp.author.externalNEWSHOLME, Philip:Curtin Univ, Curtin Med Sch, Perth, WA 6102, Australia; Curtin Univ, Curtin Hlth Innovat Res Inst, Perth, WA 6102, Australia
hcfmusp.author.externalSETHI, Jaswinder K.:Univ Southampton, Fac Med, Sch Human Dev & Hlth, Southampton SO16 6YD, Hants, England; Univ Southampton, Natl Inst Hlth Res Southampton Biomed Res Ctr, Southampton SO16 6YD, Hants, England; Univ Hosp Southampton Natl Hlth Serv NHS Fdn Trus, Southampton SO16 6YD, Hants, England; Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
hcfmusp.author.externalSILVEIRA, Loreana S.:Univ Sao Paulo, Inst Biomed Sci, Dept Cell Biol & Dev, Immunometab Res Grp, BR-05508000 Sao Paulo, Brazil
hcfmusp.citation.scopus17
hcfmusp.contributor.author-fmusphcJOSE CESAR ROSA NETO
hcfmusp.description.articlenumber8460
hcfmusp.description.issue16
hcfmusp.description.volume22
hcfmusp.origemWOS
hcfmusp.origem.pubmed34445165
hcfmusp.origem.scopus2-s2.0-85111910657
hcfmusp.origem.wosWOS:000689317300001
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAdolph S, 2012, CURR MICROBIOL, V65, P649, DOI 10.1007/s00284-012-0207-3eng
hcfmusp.relation.referenceAkkaya M, 2018, NAT IMMUNOL, V19, P871, DOI 10.1038/s41590-018-0156-5eng
hcfmusp.relation.referenceAl-Rashed F, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-73912-5eng
hcfmusp.relation.referenceAlarcon-Barrera JC, 2020, ANAL BIOANAL CHEM, V412, P2353, DOI 10.1007/s00216-020-02460-8eng
hcfmusp.relation.referenceANEL A, 1990, BIOCHIM BIOPHYS ACTA, V1044, P323, DOI 10.1016/0005-2760(90)90076-Aeng
hcfmusp.relation.referenceARDAWI MSM, 1991, J LAB CLIN MED, V118, P26eng
hcfmusp.relation.referenceBaker EJ, 2020, BBA-MOL CELL BIOL L, V1865, DOI 10.1016/j.bbalip.2020.158662eng
hcfmusp.relation.referenceBaker EJ, 2018, MOL ASPECTS MED, V64, P169, DOI 10.1016/j.mam.2018.08.002eng
hcfmusp.relation.referenceBalmer ML, 2016, IMMUNITY, V44, P1312, DOI 10.1016/j.immuni.2016.03.016eng
hcfmusp.relation.referenceBalyan R, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21217972eng
hcfmusp.relation.referenceBatista-Gonzalez A, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02993eng
hcfmusp.relation.referenceMargina D, 2020, FOOD CHEM TOXICOL, V143, DOI 10.1016/j.fct.2020.111558eng
hcfmusp.relation.referenceMartinez Fernando O, 2014, F1000Prime Rep, V6, P13, DOI 10.12703/P6-13eng
hcfmusp.relation.referenceMilasta S, 2016, IMMUNITY, V44, P88, DOI 10.1016/j.immuni.2015.12.002eng
hcfmusp.relation.referenceMontenegro-Burke JR, 2016, PROSTAG OTH LIPID M, V127, P1, DOI 10.1016/j.prostaglandins.2016.11.002eng
hcfmusp.relation.referenceMuroski ME, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05556-xeng
hcfmusp.relation.referenceNicholas DA, 2019, CELL METAB, V30, P447, DOI 10.1016/j.cmet.2019.07.004eng
hcfmusp.relation.referenceNomura M, 2016, NAT IMMUNOL, V17, P216, DOI 10.1038/ni.3366eng
hcfmusp.relation.referenceO'Neill LAJ, 2016, NAT REV IMMUNOL, V16, P553, DOI 10.1038/nri.2016.70eng
hcfmusp.relation.referenceO'Rourke RW, 2005, OBES SURG, V15, P1463, DOI 10.1381/096089205774859308eng
hcfmusp.relation.referencePan YD, 2017, NATURE, V543, P252, DOI 10.1038/nature21379eng
hcfmusp.relation.referenceSilveira Loreana Sanches, 2020, Exerc Immunol Rev, V26, P10eng
hcfmusp.relation.referencePark M, 2020, BIOCHEM BIOPH RES CO, V525, P786, DOI 10.1016/j.bbrc.2020.02.154eng
hcfmusp.relation.referencePassos MEP, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0385-2eng
hcfmusp.relation.referencePatsoukis N, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7692eng
hcfmusp.relation.referencePauls SD, 2020, INT J BIOCHEM CELL B, V119, DOI 10.1016/j.biocel.2019.105662eng
hcfmusp.relation.referencePearce EL, 2009, NATURE, V460, P103, DOI 10.1038/nature08097eng
hcfmusp.relation.referencePetrovic S., 2016, ENCY FOOD HLTH, P623eng
hcfmusp.relation.referencePoledne R, 2020, NUTRIENTS, V12, DOI 10.3390/nu12010008eng
hcfmusp.relation.referenceQiu J, 2019, CELL REP, V27, P2063, DOI 10.1016/j.celrep.2019.04.022eng
hcfmusp.relation.referenceRocha DM, 2016, ATHEROSCLEROSIS, V244, P211, DOI 10.1016/j.atherosclerosis.2015.11.015eng
hcfmusp.relation.referenceRowe DC, 2006, P NATL ACAD SCI USA, V103, P6299, DOI 10.1073/pnas.0510041103eng
hcfmusp.relation.referenceSokola-Wysoczanska E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10101561eng
hcfmusp.relation.referenceSilveira LS, 2016, CRIT REV EUKAR GENE, V26, P115, DOI 10.1615/CritRevEukaryotGeneExpr.2016015920eng
hcfmusp.relation.referenceSchaefer MB, 2016, INFLAMM RES, V65, P881, DOI 10.1007/s00011-016-0971-9eng
hcfmusp.relation.referenceSeike T, 2020, J GASTROENTEROL, V55, P701, DOI 10.1007/s00535-020-01679-7eng
hcfmusp.relation.referenceSeim GL, 2020, BIO-PROTOCOL, V10, DOI 10.21769/BioProtoc.3693eng
hcfmusp.relation.referenceShaikh SR, 2008, SCAND J IMMUNOL, V68, P30, DOI 10.1111/j.1365-3083.2008.02113.xeng
hcfmusp.relation.referenceSouza CO, 2020, BBA-MOL CELL BIOL L, V1865, DOI 10.1016/j.bbalip.2020.158776eng
hcfmusp.relation.referenceSouza CO, 2017, CLIN EXP PHARMACOL P, V44, P566, DOI 10.1111/1440-1681.12736eng
hcfmusp.relation.referenceStaiger H, 2004, DIABETES, V53, P3209, DOI 10.2337/diabetes.53.12.3209eng
hcfmusp.relation.referenceSukumar M, 2013, J CLIN INVEST, V123, P4479, DOI 10.1172/JCI69589eng
hcfmusp.relation.referenceTam TH, 2020, J BIOL CHEM, V295, P4902, DOI 10.1074/jbc.RA119.010868eng
hcfmusp.relation.referenceVan den Bossche J, 2018, CELL IMMUNOL, V330, P54, DOI 10.1016/j.cellimm.2018.01.009eng
hcfmusp.relation.referenceVan den Bossche J, 2017, TRENDS IMMUNOL, V38, P395, DOI 10.1016/j.it.2017.03.001eng
hcfmusp.relation.referencevan der Weerd K, 2012, DIABETES, V61, P401, DOI 10.2337/db11-1065eng
hcfmusp.relation.referenceBerod L, 2014, NAT MED, V20, P1327, DOI 10.1038/nm.3704eng
hcfmusp.relation.referencevan der Windt GJW, 2013, P NATL ACAD SCI USA, V110, P14336, DOI 10.1073/pnas.1221740110eng
hcfmusp.relation.referencevan der Windt GJW, 2012, IMMUNITY, V36, P68, DOI 10.1016/j.immuni.2011.12.007eng
hcfmusp.relation.referenceVarga T, 2016, IMMUNITY, V45, P1038, DOI 10.1016/j.immuni.2016.10.016eng
hcfmusp.relation.referenceWang RN, 2011, IMMUNITY, V35, P871, DOI 10.1016/j.immuni.2011.09.021eng
hcfmusp.relation.referenceWang S, 2009, BRIT J NUTR, V102, P497, DOI 10.1017/S0007114509231758eng
hcfmusp.relation.referenceWei XC, 2016, NATURE, V539, P294, DOI 10.1038/nature20117eng
hcfmusp.relation.referenceWeisel FJ, 2020, NAT IMMUNOL, V21, P331, DOI 10.1038/s41590-020-0598-4eng
hcfmusp.relation.referenceWilliams JW, 2018, J AM COLL CARDIOL, V72, P2166, DOI 10.1016/j.jacc.2018.08.2148eng
hcfmusp.relation.referenceWilliams NC, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00141eng
hcfmusp.relation.referenceWong SW, 2009, J BIOL CHEM, V284, P27384, DOI 10.1074/jbc.M109.044065eng
hcfmusp.relation.referenceBlagih J, 2015, IMMUNITY, V42, P41, DOI 10.1016/j.immuni.2014.12.030eng
hcfmusp.relation.referenceXu RB, 2017, J NEUROSURG, V127, P522, DOI 10.3171/2016.7.JNS1668eng
hcfmusp.relation.referenceYang WJ, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18262-6eng
hcfmusp.relation.referenceYang WQ, 2017, MOL NUTR FOOD RES, V61, DOI 10.1002/mnfr.201601075eng
hcfmusp.relation.referenceZhang XM, 2020, INTENS CARE MED EXP, V8, DOI 10.1186/s40635-020-00316-0eng
hcfmusp.relation.referenceZhao NQ, 2016, LIPIDS HEALTH DIS, V15, DOI 10.1186/s12944-016-0207-6eng
hcfmusp.relation.referenceBoothby M, 2017, IMMUNITY, V46, P743, DOI 10.1016/j.immuni.2017.04.009eng
hcfmusp.relation.referenceBouhlel MA, 2007, CELL METAB, V6, P137, DOI 10.1016/j.cmet.2007.06.010eng
hcfmusp.relation.referenceBrookens Shawna K, 2021, Immunometabolism, V3, DOI 10.20900/immunometab20210011eng
hcfmusp.relation.referenceBuck MD, 2016, CELL, V166, P63, DOI 10.1016/j.cell.2016.05.035eng
hcfmusp.relation.referenceBURNS CP, 1976, BLOOD, V47, P431eng
hcfmusp.relation.referenceCALDER PC, 1994, BIOCHEM J, V300, P509, DOI 10.1042/bj3000509eng
hcfmusp.relation.referenceCALDER PC, 1993, BRAZ J MED BIOL RES, V26, P901eng
hcfmusp.relation.referenceCALDER PC, 1990, BIOCHEM J, V269, P807, DOI 10.1042/bj2690807eng
hcfmusp.relation.referenceCALDER PC, 1995, P NUTR SOC, V54, P65, DOI 10.1079/PNS19950038eng
hcfmusp.relation.referenceCalder PC, 2020, P NUTR SOC, V79, P404, DOI 10.1017/S0029665120007077eng
hcfmusp.relation.referenceCalder PC, 2015, JPEN-PARENTER ENTER, V39, p18S, DOI 10.1177/0148607115595980eng
hcfmusp.relation.referenceCalder PC, 2015, BBA-MOL CELL BIOL L, V1851, P469, DOI 10.1016/j.bbalip.2014.08.010eng
hcfmusp.relation.referenceCalder PC, 2013, P NUTR SOC, V72, P299, DOI 10.1017/S0029665113001286eng
hcfmusp.relation.referenceCaro-Maldonado A, 2014, J IMMUNOL, V192, P3626, DOI 10.4049/jimmunol.1302062eng
hcfmusp.relation.referenceCarroll RG, 2018, J BIOL CHEM, V293, P5509, DOI 10.1074/jbc.RA118.001921eng
hcfmusp.relation.referenceCastoldi A, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17881-3eng
hcfmusp.relation.referenceChan KL, 2015, J BIOL CHEM, V290, P16979, DOI 10.1074/jbc.M115.646992eng
hcfmusp.relation.referenceChen M, 2015, J IMMUNOL, V194, P2607, DOI 10.4049/jimmunol.1403001eng
hcfmusp.relation.referenceChen YL, 2019, CIRC RES, V125, P1087, DOI 10.1161/CIRCRESAHA.119.315833eng
hcfmusp.relation.referenceCluxton D, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00115eng
hcfmusp.relation.referenceCretenet G, 2016, SCI REP-UK, V6, DOI 10.1038/srep24129eng
hcfmusp.relation.referenceCucchi D, 2020, CARDIOVASC RES, V116, P1006, DOI 10.1093/cvr/cvz208eng
hcfmusp.relation.referenceCullberg KB, 2014, NUTR DIABETES, V4, DOI 10.1038/nutd.2014.10eng
hcfmusp.relation.referenceCuri R, 2017, CLIN SCI, V131, P1329, DOI 10.1042/CS20170220eng
hcfmusp.relation.referenceDang EV, 2011, CELL, V146, P772, DOI 10.1016/j.cell.2011.07.033eng
hcfmusp.relation.referenceDangardt F, 2010, ATHEROSCLEROSIS, V212, P580, DOI 10.1016/j.atherosclerosis.2010.06.046eng
hcfmusp.relation.referenceDavanso Mariana Rodrigues, 2020, Clin Sci (Lond), DOI 10.1042/CS20201348eng
hcfmusp.relation.referenceEguchi K, 2012, CELL METAB, V15, P518, DOI 10.1016/j.cmet.2012.01.023eng
hcfmusp.relation.referenceel Hage A, 2021, CANCERS, V13, DOI 10.3390/cancers13061359eng
hcfmusp.relation.referenceElagizi A, 2021, NUTRIENTS, V13, DOI 10.3390/nu13010204eng
hcfmusp.relation.referenceFrauwirth KA, 2002, IMMUNITY, V16, P769, DOI 10.1016/S1074-7613(02)00323-0eng
hcfmusp.relation.referenceFreemerman AJ, 2014, J BIOL CHEM, V289, P7884, DOI 10.1074/jbc.M113.522037eng
hcfmusp.relation.referenceFu GT, 2021, NATURE, V595, P724, DOI 10.1038/s41586-021-03692-zeng
hcfmusp.relation.referenceGarcia-Cao I, 2012, CELL, V149, P49, DOI 10.1016/j.cell.2012.02.030eng
hcfmusp.relation.referenceGeltink RIK, 2018, ANNU REV IMMUNOL, V36, P461, DOI 10.1146/annurev-immunol-042617-053019eng
hcfmusp.relation.referenceGeyeregger R, 2005, J LEUKOCYTE BIOL, V77, P680, DOI 10.1189/jlb.1104687eng
hcfmusp.relation.referenceGhanim H, 2004, CIRCULATION, V110, P1564, DOI 10.1161/01.CIR.0000142055.53122.FAeng
hcfmusp.relation.referenceGianfrancesco MA, 2019, BBA-MOL CELL BIOL L, V1864, P1017, DOI 10.1016/j.bbalip.2019.04.001eng
hcfmusp.relation.referenceGuesdon W, 2018, J NUTR BIOCHEM, V53, P72, DOI 10.1016/j.jnutbio.2017.10.009eng
hcfmusp.relation.referenceGupta SS, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01013eng
hcfmusp.relation.referenceHan LM, 2010, NUCLEIC ACIDS RES, V38, P7458, DOI 10.1093/nar/gkq609eng
hcfmusp.relation.referenceHauser A.E., 2015, MOL BIOL B CELLS, V2nd ed., P187eng
hcfmusp.relation.referenceHe JL, 2019, INT IMMUNOPHARMACOL, V75, DOI 10.1016/j.intimp.2019.105816eng
hcfmusp.relation.referenceHerrera E, 2000, EMBO J, V19, P472, DOI 10.1093/emboj/19.3.472eng
hcfmusp.relation.referenceHowie D, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01949eng
hcfmusp.relation.referenceHradilkova K, 2019, ARTHRITIS RHEUMATOL, V71, P1756, DOI 10.1002/art.40939eng
hcfmusp.relation.referenceHubler MJ, 2016, J NUTR BIOCHEM, V34, P1, DOI 10.1016/j.jnutbio.2015.11.002eng
hcfmusp.relation.referenceJellusova J, 2017, NAT IMMUNOL, V18, P303, DOI 10.1038/ni.3664eng
hcfmusp.relation.referenceJohnson AR, 2016, MOL METAB, V5, P506, DOI 10.1016/j.molmet.2016.04.005eng
hcfmusp.relation.referenceKalugotla G, 2019, J LEUKOCYTE BIOL, V106, P803, DOI 10.1002/JLB.3HI0219-045RReng
hcfmusp.relation.referenceKhalsa JK, 2019, IMMUNOLOGY, V158, P104, DOI 10.1111/imm.13098eng
hcfmusp.relation.referenceKim YC, 2019, NAT CHEM BIOL, V15, P907, DOI 10.1038/s41589-019-0344-0eng
hcfmusp.relation.referenceKorbecki J, 2019, INFLAMM RES, V68, P915, DOI 10.1007/s00011-019-01273-5eng
hcfmusp.relation.referenceLaine PS, 2007, BIOCHEM BIOPH RES CO, V358, P150, DOI 10.1016/j.bbrc.2007.04.092eng
hcfmusp.relation.referenceLaRosa DF, 2008, J ALLERGY CLIN IMMUN, V121, pS364, DOI 10.1016/j.jaci.2007.06.016eng
hcfmusp.relation.referenceLau YCC, 2020, FASEB J, V34, P9982, DOI 10.1096/fj.202000669RReng
hcfmusp.relation.referenceLee J, 2014, J IMMUNOL, V192, P3190, DOI 10.4049/jimmunol.1302985eng
hcfmusp.relation.referenceLee JY, 2001, J BIOL CHEM, V276, P16683, DOI 10.1074/jbc.M011695200eng
hcfmusp.relation.referenceLefere S, 2019, JHEP REP, V1, P30, DOI 10.1016/j.jhepr.2019.02.004eng
hcfmusp.relation.referenceLiu XJ, 2021, J IMMUNOL, V206, P883, DOI 10.4049/jimmunol.1901444eng
hcfmusp.relation.referenceMaciolek JA, 2014, CURR OPIN IMMUNOL, V27, P60, DOI 10.1016/j.coi.2014.01.006eng
hcfmusp.relation.referenceMacIver NJ, 2013, ANNU REV IMMUNOL, V31, P259, DOI 10.1146/annurev-immunol-032712-095956eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublicationcda86b92-8ec8-48d2-a2d7-7825c90ef751
relation.isAuthorOfPublication.latestForDiscoverycda86b92-8ec8-48d2-a2d7-7825c90ef751
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_NETO_The_Immunometabolic_Roles_of_Various_Fatty_Acids_in_2021.PDF
Tamanho:
9.1 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)