Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci

Nenhuma Miniatura disponível
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
FUENTES, Lisa de las
SUNG, Yun Ju
NOORDAM, Raymond
WINKLER, Thomas
FEITOSA, Mary F.
SCHWANDER, Karen
BENTLEY, Amy R.
BROWN, Michael R.
GUO, Xiuqing
MANNING, Alisa
Citação
MOLECULAR PSYCHIATRY, v.26, n.6, p.2111-2125, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, ""Some College"" (yes/no) and ""Graduated College"" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 x 10(-8)). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
Palavras-chave
Referências
  1. Aguet F, 2017, NATURE, V550, P204, DOI 10.1038/nature24277
  2. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  3. Aoki T, 2008, INT J MOL MED, V22, P595, DOI 10.3892/ijmm_00000061
  4. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  5. Bagos PG, 2007, J HYPERTENS, V25, P487, DOI 10.1097/HJH.0b013e328011db24
  6. Basson J, 2014, AM J HYPERTENS, V27, P431, DOI [10.1093/ajh/hpu149, 10.1093/ajh/hpt283]
  7. Blockus H, 2016, DEVELOPMENT, V143, P3037, DOI 10.1242/dev.132829
  8. Bojic T, 2015, ARCH MED, V7, P1
  9. Boyle AP, 2012, GENOME RES, V22, P1790, DOI 10.1101/gr.137323.112
  10. Devlin B, 1999, BIOMETRICS, V55, P997, DOI 10.1111/j.0006-341X.1999.00997.x
  11. Ehret GB, 2016, NAT GENET, V48, P1171, DOI 10.1038/ng.3667
  12. Ehret GB, 2011, NATURE, V478, P103, DOI 10.1038/nature10405
  13. El Wakil A, 2013, HORM METAB RES, V45, P870, DOI 10.1055/s-0033-1349881
  14. Elhamdani A, 1999, J NEUROSCI, V19, P7375, DOI 10.1523/JNEUROSCI.19-17-07375.1999
  15. Ernst J, 2012, NAT METHODS, V9, P215, DOI 10.1038/nmeth.1906
  16. Evangelou E, 2018, NAT GENET, V50, P1412, DOI 10.1038/s41588-018-0205-x
  17. Feitosa MF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0198166
  18. Filigheddu F, 2004, PHARMACOGENOMICS J, V4, P154, DOI 10.1038/sj.tpj.6500247
  19. Gallo LC, 2001, PSYCHOSOM MED, V63, P925, DOI 10.1097/00006842-200111000-00011
  20. Giri A, 2019, NAT GENET, V51, P51, DOI 10.1038/s41588-018-0303-9
  21. Hertz RP, 2005, ARCH INTERN MED, V165, P2098, DOI 10.1001/archinte.165.18.2098
  22. Hoffmann TJ, 2017, NAT GENET, V49, P54, DOI 10.1038/ng.3715
  23. JACOBSEN BK, 1988, AM J EPIDEMIOL, V127, P923, DOI 10.1093/oxfordjournals.aje.a114895
  24. KAPLAN GA, 1991, AM J PREV MED, V7, P12, DOI 10.1016/S0749-3797(18)30959-0
  25. KAPLAN GA, 1993, CIRCULATION, V88, P1973, DOI 10.1161/01.CIR.88.4.1973
  26. Kircher M, 2014, NAT GENET, V46, P310, DOI 10.1038/ng.2892
  27. Kundaje A, 2015, NATURE, V518, P317, DOI 10.1038/nature14248
  28. Lee JJ, 2018, NAT GENET, V50, P1112, DOI 10.1038/s41588-018-0147-3
  29. Leng B, 2015, J HYPERTENS, V33, P221, DOI 10.1097/HJH.0000000000000428
  30. Levy D, 2009, NAT GENET, V41, P677, DOI 10.1038/ng.384
  31. LIBERATOS P, 1988, EPIDEMIOL REV, V10, P87, DOI 10.1093/oxfordjournals.epirev.a036030
  32. Liu CY, 2016, NAT GENET, V48, P1162, DOI 10.1038/ng.3660
  33. Liu JM, 2003, MECH DEVELOP, V120, P1059, DOI 10.1016/S0925-4773(03)00161-8
  34. Manning AK, 2011, GENET EPIDEMIOL, V35, P11, DOI 10.1002/gepi.20546
  35. Marques FZ, 2011, HYPERTENSION, V58, P1093, DOI 10.1161/HYPERTENSIONAHA.111.180729
  36. MATTHEWS KA, 1989, AM J EPIDEMIOL, V129, P1132, DOI 10.1093/oxfordjournals.aje.a115235
  37. McCafffry JM, 2008, PSYCHOSOM MED, V70, P781, DOI 10.1097/PSY.0b013e3181817be6
  38. McClintick JN, 2016, ALCOHOL CLIN EXP RES, V40, P955, DOI 10.1111/acer.13056
  39. McEwen BS, 2010, ANN NY ACAD SCI, V1186, P190, DOI 10.1111/j.1749-6632.2009.05331.x
  40. Metcalf PA, 1998, AM J EPIDEMIOL, V148, P750
  41. Michael DR, 2011, J BIOL CHEM, V286, P19523, DOI 10.1074/jbc.M111.233916
  42. Milnerwood AJ, 2013, P NATL ACAD SCI USA, V110, P20296, DOI 10.1073/pnas.1222384110
  43. Newton-Cheh C, 2009, NAT GENET, V41, P666, DOI 10.1038/ng.361
  44. Ohyama T, 2007, J CELL BIOL, V179, P1481, DOI 10.1083/jcb.200710061
  45. Patel MS, 2017, CIRCULATION, V135
  46. Paul JD, 2013, J MOL CELL CARDIOL, V64, P124, DOI 10.1016/j.yjmcc.2013.09.005
  47. PIERCE JP, 1989, JAMA-J AM MED ASSOC, V261, P56, DOI 10.1001/jama.261.1.56
  48. Rao DC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.116.001649
  49. Rietveld CA, 2013, SCIENCE, V340, P1467, DOI 10.1126/science.1235488
  50. Shi W, 2015, MOL CELL NEUROSCI, V68, P194, DOI 10.1016/j.mcn.2015.07.005
  51. Siffert W, 1998, NAT GENET, V18, P45, DOI 10.1038/ng0198-45
  52. Smith GD, 1998, J EPIDEMIOL COMMUN H, V52, P399, DOI 10.1136/jech.52.6.399
  53. SOREL JE, 1992, AM J EPIDEMIOL, V135, P1339, DOI 10.1093/oxfordjournals.aje.a116245
  54. Stamler J, 2003, J HUM HYPERTENS, V17, P655, DOI 10.1038/sj.jhh.1001608
  55. Steffen PR, 2006, J BEHAV MED, V29, P501, DOI 10.1007/s10865-006-9079-y
  56. Steptoe A, 2011, BRAIN BEHAV IMMUN, V25, P1292, DOI 10.1016/j.bbi.2011.04.010
  57. Sung YJ, 2018, AM J HUM GENET, V102, P375, DOI 10.1016/j.ajhg.2018.01.015
  58. Surendran P, 2016, NAT GENET, V48, P1151, DOI 10.1038/ng.3654
  59. Takaesu G, 2006, J CELL BIOL, V175, P383, DOI 10.1083/jcb.200608031
  60. Tian HG, 1996, APPETITE, V26, P235, DOI 10.1006/appe.1996.0018
  61. Tobin MD, 2005, STAT MED, V24, P2911, DOI 10.1002/sim.2165
  62. Turner ST, 2001, HYPERTENSION, V37, P739, DOI 10.1161/01.HYP.37.2.739
  63. Tyroler HA, 1989, HYPERTENSION S1, V13, P94
  64. Vargas CM, 2000, AM J EPIDEMIOL, V152, P272, DOI 10.1093/aje/152.3.272
  65. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  66. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  67. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  68. Westra HJ, 2013, NAT GENET, V45, P1238, DOI 10.1038/ng.2756
  69. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  70. WINKLEBY MA, 1992, AM J PUBLIC HEALTH, V82, P816, DOI 10.2105/AJPH.82.6.816
  71. Winkler TW, 2014, NAT PROTOC, V9, P1192, DOI 10.1038/nprot.2014.071
  72. Ypsilanti AR, 2010, DEVELOPMENT, V137, P1939, DOI 10.1242/dev.044511
  73. 1977, AM J EPIDEMIOL, V106, P351, DOI 10.1093/OXFORDJOURNALS.AJE.A112476