Low CCL2 and CXCL8 Production and High Prevalence of Allergies in Children with Microcephaly Due to Congenital Zika Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
BEZERRA, Wallace Pitanga
SALMERON, Amanda Costa Ayres
MORAIS, Ingryd Camara
SALES, Valeria Soraya de Farias
MACHADO, Paula Renata Lima
SOUTO, Janeusa Trindade
ARAUJO, Joselio Maria Galvao de
GUEDES, Paulo Marcos da Matta
Citação
VIRUSES-BASEL, v.15, n.9, article ID 1832, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Congenital Zika Syndrome (CZS) is associated with an increased risk of microcephaly in affected children. This study investigated the peripheral dysregulation of immune mediators in children with microcephaly due to CZS. Gene expression quantified by qPCR in whole blood samples showed an increase in IFN gamma and IL-13 transcripts in children affected with microcephaly compared to the control group. The microcephaly group exhibited significantly decreased CCL2 and CXCL8 levels in serum, quantified by CBA assay. An allergic profile questionnaire revealed a high prevalence of allergies in the microcephaly group. In accordance, elevated serum IgE level measured by the Proquantum Immunoassay was observed in children affected with microcephaly compared to the control group. Altogether, these findings show a persistent systemic inflammation in children with microcephaly due to CZS and suggest a possible impairment in leukocyte migration caused by low production of CCL2 and CXCL8, in addition to high levels of IgE associated with high prevalence of allergies. The dysregulation of inflammatory genes and chemokines underscores the importance of understanding the immunological characteristics of CZS. Further investigation into the long-term consequences of systemic inflammation in these children is crucial for developing appropriate therapeutic strategies and tailored vaccination protocols.
Palavras-chave
Congenital Zika Syndrome, microcephaly, allergy, chronic inflammation, leukocyte migration
Referências
  1. Agrelli A, 2019, INFECT GENET EVOL, V69, P22, DOI 10.1016/j.meegid.2019.01.018
  2. [Anonymous], 2017, Secretaria de Vigilancia em Saude Virus Zika no Brasil: A Resposta do SUS, V1st ed.
  3. Asher MI, 1998, CLIN EXP ALLERGY, V28, P52
  4. Salmeron ACA, 2022, MED MICROBIOL IMMUN, V211, P219, DOI 10.1007/s00430-022-00746-5
  5. Azevedo RSS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-17765-5
  6. Christian KM, 2019, ANNU REV NEUROSCI, V42, P249, DOI 10.1146/annurev-neuro-080317-062231
  7. Devakumar D, 2018, LANCET INFECT DIS, V18, pE1, DOI [10.1016/S1473-3099(17)30398-5, 10.1016/s1473-3099(17)30398-5]
  8. Di Cavalcanti D, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175065
  9. Ellwood P, 2005, INT J TUBERC LUNG D, V9, P10
  10. Filgueiras IS, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0009575
  11. Freitas DA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242367
  12. Gowthaman U, 2020, J LEUKOCYTE BIOL, V107, P409, DOI 10.1002/JLB.3RI1219-425R
  13. Gowthaman U, 2019, SCIENCE, V365, P883, DOI 10.1126/science.aaw6433
  14. Ha H, 2017, THERANOSTICS, V7, P1543, DOI 10.7150/thno.15625
  15. Kam YW, 2017, J INFECT DIS, V216, P172, DOI 10.1093/infdis/jix261
  16. Levy O, 2007, NAT REV IMMUNOL, V7, P379, DOI 10.1038/nri2075
  17. Lima MC, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01928
  18. Lin Z, 2023, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1053457
  19. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  20. Lowe R, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15010096
  21. McCormick SM, 2015, CYTOKINE, V75, P38, DOI 10.1016/j.cyto.2015.05.023
  22. Metzemaekers M, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01970
  23. Miner JJ, 2017, CELL HOST MICROBE, V21, P134, DOI 10.1016/j.chom.2017.01.004
  24. Moore CA, 2017, JAMA PEDIATR, V171, P288, DOI 10.1001/jamapediatrics.2016.3982
  25. Nascimento-Carvalho GC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87895-4
  26. Nio Y, 2012, DIABETOLOGIA, V55, P3350, DOI 10.1007/s00125-012-2710-2
  27. OLIVEIRA IC, 1992, P NATL ACAD SCI USA, V89, P9049, DOI 10.1073/pnas.89.19.9049
  28. Orofino DHG, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006362
  29. Ruytinx P, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.01930
  30. Saghafian-Hedengren S, 2009, J IMMUNOL, V182, P2511, DOI 10.4049/jimmunol.0801699
  31. Sica A, 2012, J CLIN INVEST, V122, P787, DOI 10.1172/JCI59643
  32. Singh S, 2021, INT IMMUNOPHARMACOL, V101, DOI 10.1016/j.intimp.2021.107598
  33. Souza Alex Sandro Rolland, 2016, Rev. Bras. Saude Mater. Infant., V16, pS7, DOI 10.1590/1806-9304201600s100002
  34. Vinhaes CL, 2020, J INFECT DIS, V222, P670, DOI 10.1093/infdis/jiaa197
  35. Wang T, 2008, J IMMUNOL, V180, P2886, DOI 10.4049/jimmunol.180.5.2886
  36. Wen ZX, 2017, GENE DEV, V31, P849, DOI 10.1101/gad.298216.117