Oxidized and electronegative low-density lipoprotein as potential biomarkers of cardiovascular risk in obese adolescents

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Autores
FREITAS, Maria Camila Pruper de
FERNANDEZ, Diana Gabriela Estevez
COHEN, Danielle
FIGUEIREDO-NETO, Antonio Martins
DAMASCENO, Nagila Raquel Teixeira
Citação
CLINICS, v.73, article ID UNSP e189, 7p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: To evaluate biomarkers associated with early cardiometabolic risk in obese adolescents. METHODS: This cross-sectional study included 137 adolescents of both sexes aged 10 to 19 years divided into a normal weight group (NW) (n=69) and an obese group (OB) (n=68). RESULTS: As expected, obesity showed positive associations with homeostatic model assessment for insulin resistance (HOMA-IR), triacylglycerol, insulin, plasma levels of non-esterified fatty acids, and cholesterol ester transfer protein activity and negative associations with plasma antioxidant levels. Plasma oxidized low-density lipoprotein (oxLDL) and electronegative low-density lipoprotein [LDL(-)] levels were significantly higher in the OB group. Higher tertiles of oxLDL were associated with increased values of body mass index; waist circumference; fatty mass percentage (%FM); and the atherogenic lipids non-high-density-lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B and triacylglycerol. Higher tertiles of LDL(-) were robustly associated with body mass index and waist circumference. Logistic regression models (odds ratios) confirmed that increased values of lipids and apolipoprotein B were associated with increased risk of oxLDL. For LDL(-), these associations were not significant, suggesting that another mechanism is involved in generating this particle in obese adolescents. CONCLUSIONS: Obese adolescents showed increased plasma LDL(-) and oxLDL, and obese girls had more LDL(-) than obese boys. Therefore, oxLDL is strongly and independently associated with classical cardiovascular risk factors, while increased levels of LDL(-) were influenced by body mass index, waist circumference and demographic parameters in obese adolescents.
Palavras-chave
Obesity, Adolescent, Lipoproteins, Low-density Lipoprotein
Referências
  1. AVOGARO P, 1988, ARTERIOSCLEROSIS, V8, P79, DOI 10.1161/01.ATV.8.1.79
  2. Bancells C, 2008, BIOCHEMISTRY-US, V47, P8186, DOI 10.1021/bi800537h
  3. Bancells C, 2010, J LIPID RES, V51, P3508, DOI 10.1194/jlr.M009258
  4. Barter P, 2000, ARTERIOSCL THROM VAS, V20, P2029, DOI 10.1161/01.ATV.20.9.2029
  5. Bassuk SS, 2010, NUTR METAB CARDIOVAS, V20, P467, DOI 10.1016/j.numecd.2009.12.015
  6. Berenson GS, 1998, NEW ENGL J MED, V338, P1650, DOI 10.1056/NEJM199806043382302
  7. Brotman DJ, 2005, ARCH INTERN MED, V165, P138, DOI 10.1001/archinte.165.2.138
  8. Alves MIB, 2010, J PHYSIOL BIOCHEM, V66, P221, DOI 10.1007/s13105-010-0028-4
  9. Chu NF, 1998, AM J CLIN NUTR, V67, P1141
  10. Cole TJ, 2000, BRIT MED J, V320, P1240, DOI 10.1136/bmj.320.7244.1240
  11. de Onis M, 2013, PUBLIC HEALTH NUTR, V16, P625, DOI 10.1017/S1368980012004776
  12. Ebbeling CB, 2002, LANCET, V360, P473, DOI 10.1016/S0140-6736(02)09678-2
  13. Falaschetti E, 2010, EUR HEART J, V31, P3063, DOI 10.1093/eurheartj/ehq355
  14. Freedman DS, 1999, AM J CLIN NUTR, V69, P308
  15. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  16. HANSSON GK, 1989, AM J PATHOL, V135, P169
  17. Hsu JF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107340
  18. Instituto Brasileiro de Geografia e Estatistica (IBGE), 2010, POF 2008 2009 ANTR E
  19. Itabe H, 2011, J LIPIDS, DOI 10.1155/2011/418313
  20. Ivanova EA, 2015, VASC HEALTH RISK MAN, V11, P525, DOI 10.2147/VHRM.S74697
  21. Kelishadi R, 2008, CLIN CHEM, V54, P147, DOI 10.1373/clinchem.2007.089953
  22. Lee AS, 2014, CARDIOVASC DIABETOL, V13, DOI 10.1186/1475-2840-13-64
  23. Linna MS, 2007, INT J OBESITY, V31, P245, DOI 10.1038/sj.ijo.0803413
  24. MARSHALL WA, 1969, ARCH DIS CHILD, V44, P291, DOI 10.1136/adc.44.235.291
  25. MARSHALL WA, 1970, ARCH DIS CHILD, V45, P13, DOI 10.1136/adc.45.239.13
  26. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  27. Neuhouser ML, 2001, J NUTR, V131, P2184
  28. Njajou OT, 2009, DIABETES-METAB RES, V25, P733, DOI 10.1002/dmrr.1011
  29. Norris AL, 2011, OBESITY, V19, P1415, DOI 10.1038/oby.2011.21
  30. Ogden CL, 2012, JAMA-J AM MED ASSOC, V307, P483, DOI 10.1001/jama.2012.40
  31. Mello APQ, 2011, ATHEROSCLEROSIS, V215, P257, DOI 10.1016/j.atherosclerosis.2010.12.028
  32. Rao F, 2015, ARTERIOSCL THROM VAS, V35, P1704, DOI 10.1161/ATVBAHA.115.305306
  33. Reinehr T, 2005, NUTR METAB CARDIOVAS, V15, P181, DOI 10.1016/j.numced.2004.06.003
  34. Ryder JR, 2013, DIABETOL METAB SYNDR, V5, DOI 10.1186/1758-5996-5-72
  35. Sanchez-Quesada JL, 2004, CURR OPIN LIPIDOL, V15, P329, DOI [10.1097/00041433-200406000-00014, 10.1097/01.mol.0000130093.54381.22]
  36. Faulin TDS, 2012, CLIN CHIM ACTA, V413, P291, DOI 10.1016/j.cca.2011.10.004
  37. SPSS INCORPORATION, 2011, STAT PACK SOC SCI SP
  38. Stary HC, 1989, ARTERIOSCLER, V9, pI19
  39. Xavier HT, 2013, ARQ BRAS CARDIOL, V101, P1, DOI 10.5935/abc.2013S010
  40. Yoshida H, 2010, CLIN CHIM ACTA, V411, P1875, DOI 10.1016/j.cca.2010.08.038