Integrative Variation Analysis Reveals that a Complex Genotype May Specify Phenotype in Siblings with Syndromic Autism Spectrum Disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
KITAJIMA, Joao Paulo
FOCK, Rodrigo Ambrosio
SIMOES, Sergio Nery
KREPISCHI, Ana C. V.
ROSENBERG, Carla
LOURENCO, Naila Cristina
Citação
PLOS ONE, v.12, n.1, article ID e0170386, 22p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
It has been proposed that copy number variations (CNVs) are associated with increased risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, contribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization (aCGH) and exome sequencing, together with systems genetics and network analyses, are being used as tools for the study of complex disorders of unknown etiology, especially those characterized by significant genetic and phenotypic heterogeneity. Therefore, to characterize the complex genotype-phenotype relationship, we performed aCGH and sequenced the exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual disability, searching for de novo CNVs, as well as for de novo and rare inherited point variations D single nucleotide variants (SNVs) or small insertions and deletions (indels) D with probable functional impacts. With aCGH, we identified, in both siblings, a duplication in the 4p16.3 region and a deletion at 8p23.3, inherited by a paternal balanced translocation, t(4, 8) (p16; p23). Exome variant analysis found a total of 316 variants, of which 102 were shared by both siblings, 128 were in the male sibling exome data, and 86 were in the female exome data. Our integrative network analysis showed that the siblings' shared translocation could explain their similar syndromic phenotype, including overgrowth, macrocephaly, and intellectual disability. However, exome data aggregate genes to those already connected from their translocation, which are important to the robustness of the network and contribute to the understanding of the broader spectrum of psychiatric symptoms. This study shows the importance of using an integrative approach to explore genotype-phenotype variability.
Palavras-chave
Referências
  1. Abrahams BS, 2008, NAT REV GENET, V9, P341, DOI 10.1038/nrg2346
  2. Altmann A, 2012, HUM GENET, V131, P1541, DOI 10.1007/s00439-012-1213-z
  3. American Psychiatric Association, 2013, DIAGN STAT MAN MENT
  4. Andrews T, 2015, GENOME RES, V25, P802, DOI 10.1101/gr.184325.114
  5. Anney R, 2012, HUM MOL GENET, V21, P4781, DOI 10.1093/hmg/dds301
  6. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  7. Benvenuto A, 2009, INT J PEDIAT, V2009, P1, DOI 10.1155/2009/198736
  8. Berghs S, 2000, J CELL BIOL, V151, P985, DOI 10.1083/jcb.151.5.985
  9. Bi C, 2012, HUM MUTAT, V33, P1635, DOI 10.1002/humu.22174
  10. Bosse K, 2004, ANN GENET-PARIS, V47, P191, DOI 10.1016/j.anngen.2004.02.004
  11. Bremer A, 2011, AM J MED GENET B, V156B, P115, DOI 10.1002/ajmg.b.31142
  12. Burnside RD, 2013, AM J MED GENET A, V161A, P822, DOI 10.1002/ajmg.a.35699
  13. Cai JJ, 2010, GENOME BIOL EVOL, V2, P815, DOI 10.1093/gbe/evq064
  14. Chang BS, 2007, AM J MED GENET B, V144B, P58, DOI 10.1002/ajmg.b.30392
  15. Cho YR, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-S3-S3
  16. Cooper GM, 2011, NAT GENET, V43, P838, DOI 10.1038/ng.909
  17. Cyr AB, 2011, AM J MED GENET A, V155A, P2224, DOI 10.1002/ajmg.a.34120
  18. Davydov EV, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1001025
  19. Delezoide AL, 1998, MECH DEVELOP, V77, P19, DOI 10.1016/S0925-4773(98)00133-6
  20. Delvecchio G, 2015, AM J MED GENET B, V168, P188, DOI 10.1002/ajmg.b.32294
  21. DePristo MA, 2011, NAT GENET, V43, P491, DOI 10.1038/ng.806
  22. Devlin B, 2012, CURR OPIN GENET DEV, V22, P229, DOI 10.1016/j.gde.2012.03.002
  23. Fatemi SH, 2000, MOL PSYCHIATR, V5, P654, DOI 10.1038/sj.mp.4000783
  24. Fombonne E, 2003, JAMA-J AM MED ASSOC, V289, P87, DOI 10.1001/jama.289.1.87
  25. Geschwind DH, 2007, CURR OPIN NEUROBIOL, V17, P103, DOI 10.1016/j.conb.2007.01.009
  26. Geschwind DH, 2015, SCIENCE, V349, P1489, DOI 10.1126/science.aaa8954
  27. Giglio S, 2002, AM J HUM GENET, V71, P276, DOI 10.1086/341610
  28. Gilman SR, 2011, NEURON, V70, P898, DOI 10.1016/j.neuron.2011.05.021
  29. Glessner JT, 2009, NATURE, V459, P569, DOI 10.1038/nature07953
  30. Goes FS, 2010, AM J MED GENET B, V153B, P549, DOI 10.1002/ajmg.b.31018
  31. GOGGIN M, 1993, BRIT J OPHTHALMOL, V77, P122, DOI 10.1136/bjo.77.2.122
  32. Graves LM, 2000, NATURE, V403, P328, DOI 10.1038/35002111
  33. Grayton HM, 2012, PROG NEUROBIOL, V99, P81, DOI 10.1016/j.pneurobio.2012.07.005
  34. Haas CA, 2002, J NEUROSCI, V22, P5797
  35. Hallmayer J, 2011, ARCH GEN PSYCHIAT, V68, P1095, DOI 10.1001/archgenpsychiatry.2011.76
  36. Hemmat M, 2013, MOL CYTOGENET, V6, DOI 10.1186/1755-8166-6-17
  37. Hori H, 2014, J AFFECT DISORDERS, V158, P90, DOI 10.1016/j.jad.2014.02.008
  38. Iossifov I, 2014, NATURE, V515, P216, DOI 10.1038/nature13908
  39. Iossifov I, 2012, NEURON, V74, P285, DOI 10.1016/j.neuron.2012.04.009
  40. Iqbal Z, 2013, HUM MOL GENET, V22, P1960, DOI 10.1093/hmg/ddt043
  41. Itan Y, 2015, P NATL ACAD SCI USA, V112, P11426, DOI 10.1073/pnas.1515057112
  42. Itsara A, 2009, AM J HUM GENET, V84, P148, DOI 10.1016/j.ajhg.2008.12.014
  43. Jacquemont ML, 2006, J MED GENET, V43, P843, DOI 10.1136/jmg.2006.043166
  44. Jensen LJ, 2009, NUCLEIC ACIDS RES, V37, pD412, DOI 10.1093/nar/gkn760
  45. Klei L, 2012, MOL AUTISM, V3, DOI 10.1186/2040-2392-3-9
  46. Krejci P, 2014, MUTAT RES-REV MUTAT, V759, P40, DOI 10.1016/j.mrrev.2013.11.001
  47. Krumm N, 2013, TRENDS NEUROSCI, V37, P1
  48. Krumm N, 2015, NAT GENET, V47, P582, DOI 10.1038/ng.3303
  49. Lacas-Gervais S, 2004, J CELL BIOL, V166, P983, DOI 10.1083/jcb.200408007
  50. Levy D, 2011, NEURON, V70, P886, DOI 10.1016/j.neuron.2011.05.015
  51. Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698
  52. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  53. Lim ET, 2013, NEURON, V77, P235, DOI 10.1016/j.neuron.2012.12.029
  54. Liu X, 2013, HUM MUTAT
  55. Maas NMC, 2007, GENET COUNSEL, V18, P357
  56. Malan V, 2010, EUR J HUM GENET, V18, P227, DOI 10.1038/ejhg.2009.162
  57. Malhotra D, 2012, CELL, V148, P1223, DOI 10.1016/j.cell.2012.02.039
  58. Manning M, 2010, GENET MED, V12, P742, DOI 10.1097/GIM.0b013e3181f8baad
  59. Marshall CR, 2008, AM J HUM GENET, V82, P477, DOI 10.1016/j.ajhg.2007.12.009
  60. Mau UA, 2000, AM J MED GENET, V91, P180, DOI 10.1002/(SICI)1096-8628(20000320)91:3<180::AID-AJMG4>3.0.CO;2-R
  61. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  62. Miles JH, 2005, AM J MED GENET A, V135A, P171, DOI 10.1002/ajmg.a.30590
  63. Miles JH, 2008, AM J MED GENET A, V146A, P1101, DOI 10.1002/ajmg.a.32244
  64. Miller JA, 2014, NATURE, V508, P199, DOI 10.1038/nature13185
  65. Miosge LA, 2015, P NATL ACAD SCI USA, V112, pE5189, DOI 10.1073/pnas.1511585112
  66. Moss J, 2009, J INTELL DISABIL RES, V53, P852, DOI 10.1111/j.1365-2788.2009.01197.x
  67. O'Roak BJ, 2012, SCIENCE, V338, P1619, DOI 10.1126/science.1227764
  68. O'Roak BJ, 2011, NAT GENET, V43, P585, DOI 10.1038/ng.835
  69. Orlandini M, 2003, J BIOL CHEM, V278, P44650, DOI 10.1074/jbc.M304255200
  70. Ou Z, 2011, GENOME RES, V21, P33, DOI 10.1101/gr.111609.110
  71. Parikshak NN, 2015, NAT REV GENET, V16, P441, DOI 10.1038/nrg3934
  72. Partington MW, 1997, J MED GENET, V34, P719, DOI 10.1136/jmg.34.9.719
  73. Pavlopoulos GA, 2011, BIODATA MIN, V4, DOI 10.1186/1756-0381-4-10
  74. Persico AM, 2013, BEHAV BRAIN RES, V251, P95, DOI 10.1016/j.bbr.2013.06.012
  75. Pinto D, 2010, NATURE, V466, P368, DOI 10.1038/nature09146
  76. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  77. Ronemus M, 2014, NAT REV GENET, V15, P133, DOI 10.1038/nrg3585
  78. Samocha KE, 2014, NAT GENET, V46, P944, DOI 10.1038/ng.3050
  79. Sanders SJ, 2012, NATURE, V485, P237, DOI 10.1038/nature10945
  80. Sanders SJ, 2011, NEURON, V70, P863, DOI 10.1016/j.neuron.2011.05.002
  81. Schonewolf-Greulich B, 2013, AM J MED GENET A, V161, P2358, DOI 10.1002/ajmg.a.36099
  82. Schwartz CM, 2012, J NEUROSCI RES, V90, P1367, DOI 10.1002/jnr.23064
  83. Sebat J, 2007, SCIENCE, V316, P445, DOI 10.1126/science.1138659
  84. Shifman S, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.0040028
  85. Skaar DA, 2005, MOL PSYCHIATR, V10, P563, DOI 10.1038/sj.mp.4001614
  86. Skrlec Ivana, 2014, Coll Antropol, V38, P319
  87. Smith KR, 2014, NEURON, V84, P399, DOI 10.1016/j.neuron.2014.10.010
  88. State MW, 2011, NAT NEUROSCI, V14, P1499, DOI 10.1038/nn.2924
  89. Su L, 2008, NEUROMOL MED, V10, P316, DOI 10.1007/s12017-008-8042-1
  90. Van der Auwera G. A., 2013, CURR PROTOC BIOINFOR, V11, P1, DOI 10.1002/0471250953.BI1110S43
  91. Veltman JA, 2012, NAT REV GENET, V13, P565, DOI 10.1038/nrg3241
  92. Wang J-B, 2013, ELECTRON J DIFFER EQ, V2013, P1, DOI 10.1155/2013/978398
  93. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  94. Welser-Alves JV, 2013, ARTERIOSCL THROM VAS, V33, P943, DOI 10.1161/ATVBAHA.112.300566
  95. WING L, 1979, J AUTISM DEV DISORD, V9, P11, DOI 10.1007/BF01531288
  96. Wu JX, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004237
  97. Xue-Qi C, 2010, J STAT MECH-THEORY E, V2010
  98. Yuen Ryan K C, 2015, Nat Med, V21, P185, DOI 10.1038/nm.3792
  99. Zafeiriou DI, 2013, AM J MED GENET B
  100. Zhang C, 2014, PROG NEURO-PSYCHOPH, V50, P110, DOI 10.1016/j.pnpbp.2013.12.010