Impact of a cell cycle and an extracellular matrix remodeling transcriptional signature on tumor progression and correlation with EZH2 expression in meningioma

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC NEUROLOGICAL SURGEONS
Citação
JOURNAL OF NEUROSURGERY, v.138, n.3, p.649-662, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcrip-tome, and protein expressions. METHODS The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequenc-ing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3 ' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry.RESULTS The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningio-mas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expres-sion of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predic-tive of survival and exhibited significant correlations with EZH2 expression.
Palavras-chave
meningioma recurrence, transcriptomic profile, somatic mutations, tumor
Referências
  1. Pereira BJA, 2019, NEUROSURG REV, V42, P631, DOI 10.1007/s10143-018-0959-8
  2. Barbera S, 2013, CLIN NEUROPATHOL, V32, P311, DOI 10.5414/NP300580
  3. Bayley JC, 2022, SCI ADV, V8, DOI 10.1126/sciadv.abm6247
  4. Bracken AP, 2003, EMBO J, V22, P5323, DOI 10.1093/emboj/cdg542
  5. Burr ML, 2019, CANCER CELL, V36, P385, DOI 10.1016/j.ccell.2019.08.008
  6. Champeaux C, 2019, NEUROSURGERY, V85, pE461, DOI 10.1093/neuros/nyy610
  7. Chang X, 2013, NEUROSURG FOCUS, V35, DOI 10.3171/2013.10.FOCUS13326
  8. de Almeida AN, 2017, WORLD NEUROSURG, V102, P139, DOI 10.1016/j.wneu.2017.03.009
  9. Galatro TFD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061605
  10. Driver J, 2022, NEURO-ONCOLOGY, V24, P796, DOI 10.1093/neuonc/noab213
  11. Falero-Perez J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231752
  12. Gao F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054114
  13. Goldbrunner R, 2016, LANCET ONCOL, V17, pE383, DOI 10.1016/S1470-2045(16)30321-7
  14. Hale AT, 2018, J CLIN NEUROSCI, V48, P71, DOI 10.1016/j.jocn.2017.11.013
  15. Harmanci AS, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14433
  16. Herrmann PC, 2003, PROTEOMICS, V3, P1801, DOI 10.1002/pmic.200300461
  17. Kshettry VR, 2015, NEURO-ONCOLOGY, V17, P1166, DOI 10.1093/neuonc/nov069
  18. Labbe DP, 2017, CLIN CANCER RES, V23, P7072, DOI 10.1158/1078-0432.CCR-17-0413
  19. LeBleu VS, 2014, NAT CELL BIOL, V16, P992, DOI 10.1038/ncb3039
  20. Lerario AM, 2020, CLIN SAO PAULO, V75, P1913
  21. Li J, 2012, BIOINFORMATICS, V28, P1307, DOI 10.1093/bioinformatics/bts146
  22. Louis DN, 2021, NEURO-ONCOLOGY, V23, P1231, DOI 10.1093/neuonc/noab106
  23. Monleon D, 2010, CANCER RES, V70, P8426, DOI 10.1158/0008-5472.CAN-10-1498
  24. Nanda A, 2016, J CLIN NEUROSCI, V31, P112, DOI 10.1016/j.jocn.2016.02.021
  25. Nassiri F, 2021, NATURE, V597, P119, DOI 10.1038/s41586-021-03850-3
  26. Orton A, 2018, J NEUROSURG, V128, P1684, DOI 10.3171/2017.2.JNS162282
  27. Ostrom QT, 2019, NEURO-ONCOLOGY, V21, pV1, DOI 10.1093/neuonc/noz150
  28. Pan Y, 2018, J EXP CLIN CANC RES, V37, DOI 10.1186/s13046-018-0848-6
  29. Paramasivam N, 2019, ACTA NEUROPATHOL, V138, P295, DOI 10.1007/s00401-019-02008-w
  30. Patel AJ, 2019, P NATL ACAD SCI USA, V116, P21715, DOI 10.1073/pnas.1912858116
  31. Perez-Magan E, 2010, NEURO-ONCOLOGY, V12, P1278, DOI 10.1093/neuonc/noq081
  32. Rogers CL, 2020, INT J RADIAT ONCOL, V106, P790, DOI 10.1016/j.ijrobp.2019.11.028
  33. Sahm F, 2017, LANCET ONCOL, V18, P682, DOI 10.1016/S1470-2045(17)30155-9
  34. Schreiber SN, 2004, P NATL ACAD SCI USA, V101, P6472, DOI 10.1073/pnas.0308686101
  35. Storey JD, 2003, P NATL ACAD SCI USA, V100, P9440, DOI 10.1073/pnas.1530509100
  36. Tabbal H, 2019, BRIT J CANCER, V121, P384, DOI 10.1038/s41416-019-0538-y
  37. Tusher VG, 2001, P NATL ACAD SCI USA, V98, P5116, DOI 10.1073/pnas.091062498
  38. Vasudevan HN, 2018, CELL REP, V22, P3672, DOI 10.1016/j.celrep.2018.03.013
  39. Viaene AN, 2019, ACTA NEUROPATHOL COM, V7, DOI 10.1186/s40478-019-0690-x
  40. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  41. Wang XC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052707
  42. Weber DC, 2018, RADIOTHER ONCOL, V128, P260, DOI 10.1016/j.radonc.2018.06.018
  43. Wilkerson MD, 2010, BIOINFORMATICS, V26, P1572, DOI 10.1093/bioinformatics/btq170
  44. Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X
  45. Yu LL, 2017, CANCER RES, V77, P1564, DOI 10.1158/0008-5472.CAN-16-2074