Comparing plasma and skin imprint metabolic profiles in COVID-19 diagnosis and severity assessment

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
DELAFIORI, Jeany
OLIVEIRA, Arthur Noin de
SALES, Geovana Manzan
DALCOQUIO, Talia Falcao
BUSANELLO, Estela Natacha Brandt
EGUTI, Adriana
OLIVEIRA, Diogo Noin de
Citação
JOURNAL OF MOLECULAR MEDICINE-JMM, v.102, n.2, p.183-195, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
As SARS-CoV-2 continues to produce new variants, the demand for diagnostics and a better understanding of COVID-19 remain key topics in healthcare. Skin manifestations have been widely reported in cases of COVID-19, but the mechanisms and markers of these symptoms are poorly described. In this cross-sectional study, 101 patients (64 COVID-19 positive patients and 37 controls) were enrolled between April and June 2020, during the first wave of COVID-19, in Sao Paulo, Brazil. Enrolled patients had skin imprints sampled non-invasively using silica plates; plasma samples were also collected. Samples were used for untargeted lipidomics/metabolomics through high-resolution mass spectrometry. We identified 558 molecular ions, with lipids comprising most of them. We found 245 plasma ions that were significant for COVID-19 diagnosis, compared to 61 from the skin imprints. Plasma samples outperformed skin imprints in distinguishing patients with COVID-19 from controls, with F1-scores of 91.9% and 84.3%, respectively. Skin imprints were excellent for assessing disease severity, exhibiting an F1-score of 93.5% when discriminating between patient hospitalization and home care statuses. Specifically, oleamide and linoleamide were the most discriminative biomarkers for identifying hospitalized patients through skin imprinting, and palmitic amides and N-acylethanolamine 18:0 were also identified as significant biomarkers. These observations underscore the importance of primary fatty acid amides and N-acylethanolamines in immunomodulatory processes and metabolic disorders. These findings confirm the potential utility of skin imprinting as a valuable non-invasive sampling method for COVID-19 screening; a method that may also be applied in the evaluation of other medical conditions.Key messagesSkin imprints complement plasma in disease metabolomics.The annotated markers have a role in immunomodulation and metabolic diseases.Skin imprints outperformed plasma samples at assessing disease severity.Skin imprints have potential as non-invasive sampling strategy for COVID-19.
Palavras-chave
Mass spectrometry, COVID-19, Skin, Lipidomics, Metabolomics, SARS-CoV-2
Referências
  1. Åkesson L, 2011, METABOLOMICS, V7, P593, DOI 10.1007/s11306-011-0278-3
  2. Barberis E, 2021, METABOLITES, V11, DOI 10.3390/metabo11120847
  3. Barberis E, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21228623
  4. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
  5. Bruzzone C, 2020, ISCIENCE, V23, DOI 10.1016/j.isci.2020.101645
  6. Byeon SK, 2022, LANCET DIGIT HEALTH, V4, pE632, DOI 10.1016/S2589-7500(22)00112-1
  7. Castañé H, 2022, METABOLISM, V131, DOI 10.1016/j.metabol.2022.155197
  8. Castillo-Peinado LS, 2019, TALANTA, V193, P29, DOI 10.1016/j.talanta.2018.09.088
  9. Caterino M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82426-7
  10. Chen Y, 2016, CLIN BIOCHEM, V49, P962, DOI 10.1016/j.clinbiochem.2016.05.016
  11. D'Alessandro A, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10092293
  12. De Silva IW, 2020, ANALYST, V145, P5725, DOI [10.1039/d0an01074j, 10.1039/D0AN01074J]
  13. Delafiori J, 2021, ANAL CHEM, V93, P2471, DOI 10.1021/acs.analchem.0c04497
  14. dos Santos GC, 2020, ANAL CHEM, V92, P15688, DOI 10.1021/acs.analchem.0c04679
  15. Esteves CZ, 2018, FRONT PEDIATR, V5, DOI 10.3389/fped.2017.00290
  16. Fonseca BM, 2013, PROSTAG OTH LIPID M, V102, P13, DOI 10.1016/j.prostaglandins.2013.02.002
  17. Garg S, 2020, DERMATOL THER, V33, DOI 10.1111/dth.13859
  18. Gehin C, 2023, METABOLOMICS, V19, DOI 10.1007/s11306-023-01982-3
  19. Genovese G, 2021, DERMATOLOGY, V237, P1, DOI 10.1159/000512932
  20. Ghini V, 2022, PLOS PATHOG, V18, DOI 10.1371/journal.ppat.1010443
  21. Grassin-Delyle S, 2021, EBIOMEDICINE, V63, DOI 10.1016/j.ebiom.2020.103154
  22. Gromski PS, 2015, ANAL CHIM ACTA, V879, P10, DOI 10.1016/j.aca.2015.02.012
  23. Guarneri C, 2021, LANCET INFECT DIS, V21, P24, DOI 10.1016/S1473-3099(20)30402-3
  24. Ha CY, 2012, CLIN ENDOCRINOL, V76, P674, DOI 10.1111/j.1365-2265.2011.04244.x
  25. Hao YH, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2021.102974
  26. Hernández-Cervantes R, 2017, NEUROIMMUNOMODULAT, V24, P183, DOI 10.1159/000481824
  27. Hiley CR, 2007, CARDIOVASC DRUG REV, V25, P46, DOI 10.1111/j.1527-3466.2007.00004.x
  28. Lima ED, 2015, ANAL CHEM, V87, P3585, DOI 10.1021/acs.analchem.5b00097
  29. Meoni G, 2021, PLOS PATHOG, V17, DOI 10.1371/journal.ppat.1009243
  30. Fernández-Ayala DJM, 2020, EXP GERONTOL, V142, DOI 10.1016/j.exger.2020.111147
  31. Meeran MFN, 2021, DRUG DEVELOP RES, V82, P7, DOI 10.1002/ddr.21752
  32. NIH, 2021, COVID 19 RAPID GUIDE
  33. Panahi Y, 2023, VIROL J, V20, DOI 10.1186/s12985-023-01973-9
  34. Pang ZQ, 2022, NAT PROTOC, V17, P1735, DOI 10.1038/s41596-022-00710-w
  35. Piédrola I, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1188786
  36. Recalcati S, 2020, J EUR ACAD DERMATOL, V34, pE212, DOI 10.1111/jdv.16387
  37. Rossi F, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21113809
  38. Schmelter F, 2021, FRONT MOL BIOSCI, V8, DOI 10.3389/fmolb.2021.737039
  39. Shen B, 2020, CELL, V182, P59, DOI 10.1016/j.cell.2020.05.032
  40. Sipe JC, 2005, J LEUKOCYTE BIOL, V78, P231, DOI 10.1189/jlb.0205111
  41. Song JW, 2020, CELL METAB, V32, P188, DOI 10.1016/j.cmet.2020.06.016
  42. Spick M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-16123-4
  43. Spick M, 2021, ECLINICALMEDICINE, V33, DOI 10.1016/j.eclinm.2021.100786
  44. Ständer S, 2005, J DERMATOL SCI, V38, P177, DOI 10.1016/j.jdermsci.2005.01.007
  45. Stromberg S, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.960409
  46. Su YP, 2020, CELL, V183, P1479, DOI 10.1016/j.cell.2020.10.037
  47. The RECOVERY Collaborative Group, 2021, NEW ENGL J MED, V384
  48. Valdés A, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-05667-0
  49. Wu D, 2020, NATL SCI REV, V7, P1157, DOI 10.1093/nsr/nwaa086
  50. Xue XT, 2021, J INVEST DERMATOL, V141, P206, DOI 10.1016/j.jid.2020.05.087