Should the Globus Pallidus Targeting Be Refined in Dystonia?

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
THIEME MEDICAL PUBL INC
Citação
JOURNAL OF NEUROLOGICAL SURGERY PART A-CENTRAL EUROPEAN NEUROSURGERY, v.83, n.4, p.361-367, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Study Aims Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. Methods We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. Results The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153mm (3) in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms. Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8Hz, which might be responsible for generating dystonic symptoms. Conclusions Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.
Palavras-chave
deep brain stimulation, dystonia, globus pallidus internus, somatotopy, hot spot
Referências
  1. Albanese A, 2013, MOVEMENT DISORD, V28, P863, DOI 10.1002/mds.25475
  2. ALBIN RL, 1989, TRENDS NEUROSCI, V12, P366, DOI 10.1016/0166-2236(89)90074-X
  3. Baker KB, 2010, EXP NEUROL, V222, P219, DOI 10.1016/j.expneurol.2009.12.030
  4. Barow E, 2014, BRAIN, V137, P3012, DOI 10.1093/brain/awu258
  5. Blahak C, 2011, J NEURAL TRANSM, V118, P549, DOI 10.1007/s00702-010-0544-y
  6. Brown P, 2005, CLIN NEUROPHYSIOL, V116, P2510, DOI 10.1016/j.clinph.2005.05.009
  7. Calderon DP, 2011, NAT NEUROSCI, V14, P357, DOI 10.1038/nn.2753
  8. Cheung T, 2014, ANN NEUROL, V76, P22, DOI 10.1002/ana.24187
  9. Cif L, 2012, J NEUROSURG, V116, P1144, DOI 10.3171/2012.1.JNS102045
  10. Cury RG, 2018, EXPERT REV NEUROTHER, V18, P477, DOI 10.1080/14737175.2018.1478288
  11. DELONG MR, 1990, TRENDS NEUROSCI, V13, P281, DOI 10.1016/0166-2236(90)90110-V
  12. Dembek TA, 2017, MOVEMENT DISORD, V32, P1380, DOI 10.1002/mds.27093
  13. Dietz N, 2019, NEUROSURG CLIN N AM, V30, P161, DOI 10.1016/j.nec.2018.12.001
  14. Duchin Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201469
  15. Gross RE, 2008, NEUROTHERAPEUTICS, V5, P281, DOI 10.1016/j.nurt.2008.02.001
  16. Guridi J, 1999, NEUROSURGERY, V45, P278, DOI 10.1097/00006123-199908000-00017
  17. Guridi J, 2000, NEUROLOGY, V55, pS21
  18. Habets JGV, 2018, MOVEMENT DISORD, V33, P1834, DOI 10.1002/mds.115
  19. Hamani C, 2008, NEUROSURGERY, V63, P217, DOI [10.1227/01.NEU.0000297026.98243.68, 10.1227/01.neu.0000317396.16089.bc]
  20. Horisawa S, 2020, J NEUROSURG, V132, P712, DOI 10.3171/2018.11.JNS182180
  21. Iwamuro H, 2017, EUR J NEUROSCI, V46, P2684, DOI 10.1111/ejn.13738
  22. Jones EG, 2003, THALAMUS
  23. Klein C, 2013, MOVEMENT DISORD, V28, P851, DOI 10.1002/mds.25546
  24. Koch G, 2014, BRAIN STIMUL, V7, P564, DOI 10.1016/j.brs.2014.05.002
  25. Kuhn AA, 2009, EXP NEUROL, V215, P380, DOI 10.1016/j.expneurol.2008.11.008
  26. Kupsch A, 2006, NEW ENGL J MED, V355, P1978, DOI 10.1056/NEJMoa063618
  27. Little S, 2013, ANN NEUROL, V74, P449, DOI 10.1002/ana.23951
  28. Little S, 2012, ANN NY ACAD SCI, V1265, P9, DOI 10.1111/j.1749-6632.2012.06650.x
  29. Liu XG, 2002, MOVEMENT DISORD, V17, P346, DOI 10.1002/mds.10038
  30. Liu XG, 2008, BRAIN, V131, P1562, DOI 10.1093/brain/awn083
  31. Miocinovic S, 2015, JAMA NEUROL, V72, P1244, DOI 10.1001/jamaneurol.2015.2561
  32. Mirza S, 2017, PARKINSONS DIS-US, V2017, DOI 10.1155/2017/3410820
  33. Moro E, 2017, EUR J NEUROL, V24, P552, DOI 10.1111/ene.13255
  34. Muller J, 2019, J NEUROSURG, V131, P1520, DOI 10.3171/2018.7.JNS18541
  35. Nambu A, 2002, NEUROSCI RES, V43, P111, DOI 10.1016/S0168-0102(02)00027-5
  36. Neumann WJ, 2017, ANN NEUROL, V82, P912, DOI 10.1002/ana.25095
  37. Neumann WJ, 2015, BRAIN, V138, P1894, DOI 10.1093/brain/awv109
  38. Okromelidze L, 2020, AM J NEURORADIOL, V41, P508, DOI 10.3174/ajnr.A6429
  39. Ostrem JL, 2017, NEUROLOGY, V88, P25, DOI 10.1212/WNL.0000000000003451
  40. PARENT A, 1995, BRAIN RES REV, V20, P91, DOI 10.1016/0165-0173(94)00007-C
  41. Pauls KAM, 2017, PARKINSONISM RELAT D, V43, P38, DOI 10.1016/j.parkreldis.2017.06.023
  42. Pina-Fuentes D, 2020, PARKINSONISM RELAT D, V79, P105, DOI 10.1016/j.parkreldis.2020.08.030
  43. Pina-Fuentes D, 2019, NEUROBIOL DIS, V121, P47, DOI 10.1016/j.nbd.2018.09.014
  44. Pina-Fuentes D, 2018, NEUROSURG FOCUS, V45, DOI 10.3171/2018.5.FOCUS18155
  45. Prudente CN, 2014, NEUROSCIENCE, V260, P23, DOI 10.1016/j.neuroscience.2013.11.062
  46. Quartarone A, 2013, MOVEMENT DISORD, V28, P958, DOI 10.1002/mds.25532
  47. Reich MM, 2019, BRAIN, V142, P1386, DOI 10.1093/brain/awz046
  48. Rozanski VE, 2014, NEUROIMAGE, V84, P435, DOI 10.1016/j.neuroimage.2013.09.009
  49. Rozanski VE, 2017, HUM BRAIN MAPP, V38, P1224, DOI 10.1002/hbm.23450
  50. Schjerling L, 2013, J NEUROSURG, V119, P1537, DOI 10.3171/2013.8.JNS13844
  51. Schonecker T, 2015, J NEUROL NEUROSUR PS, V86, P833, DOI 10.1136/jnnp-2014-308159
  52. Sedrak M, 2010, ACTA NEUROCHIR, V152, P2079, DOI 10.1007/s00701-010-0813-4
  53. Shah A, 2020, MED BIOL ENG COMPUT, V58, P771, DOI 10.1007/s11517-020-02130-y
  54. Silberstein P, 2003, BRAIN, V126, P2597, DOI 10.1093/brain/awg267
  55. Smith Y, 1998, NEUROSCIENCE, V86, P353
  56. Sobstyl M, 2014, CLIN NEUROL NEUROSUR, V126, P82, DOI 10.1016/j.clineuro.2014.08.027
  57. Sokal P, 2015, CLIN NEUROL NEUROSUR, V135, P62, DOI 10.1016/j.clineuro.2015.05.017
  58. Starr PA, 2002, STEREOT FUNCT NEUROS, V79, P118, DOI 10.1159/000070828
  59. Steigerwald F, 2019, NEUROTHERAPEUTICS, V16, P100, DOI 10.1007/s13311-018-0667-7
  60. Taha JM, 1996, J NEUROSURG, V85, P1005, DOI 10.3171/jns.1996.85.6.1005
  61. Tewari A, 2017, MOVEMENT DISORD, V32, P1537, DOI 10.1002/mds.27123
  62. Tisch S, 2007, J NEUROL NEUROSUR PS, V78, P1314, DOI 10.1136/jnnp.2006.109694
  63. Vasques X, 2009, J NEUROSURG, V110, P220, DOI 10.3171/2008.3.17433
  64. Vayssiere N, 2004, J NEUROSURG, V101, P181, DOI 10.3171/jns.2004.101.2.0181
  65. Vidailhet M, 2005, NEW ENGL J MED, V352, P459, DOI 10.1056/NEJMoa042187
  66. Volkmann J, 2014, LANCET NEUROL, V13, P875, DOI 10.1016/S1474-4422(14)70143-7
  67. Wolf ME, 2016, GAIT POSTURE, V49, P358, DOI 10.1016/j.gaitpost.2016.07.301
  68. Yelnik J, 2000, NEUROSCIENCE, V101, P77, DOI 10.1016/S0306-4522(00)00364-X
  69. YOSHIDA S, 1993, BRAIN RES, V611, P170, DOI 10.1016/0006-8993(93)91791-P
  70. Zhang SM, 2020, FRONT COMPUT NEUROSC, V14, DOI 10.3389/fncom.2020.561180
  71. Zittel S, 2020, J NEUROL, V267, P1663, DOI 10.1007/s00415-020-09753-z