Aerobic exercise attenuates pulmonary inflammation induced by Streptococcus pneumoniae

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.117, n.9, p.998-1007, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aerobic exercise has been recognized as a stimulator of the immune system, but its effect on bacterial infection has not been extensively evaluated. We studied whether moderate aerobic exercise training prior to Streptococcus pneumoniae infection influences pulmonary inflammatory responses. BALB/c mice were divided into four groups: Sedentary Untreated (sedentary without infection); Sedentary Infected (sedentary with infection); Trained Untreated (aerobic training without infection); and Trained Infected (aerobic training with infection). Animals underwent aerobic training for 4 wk, and 72 h after last exercise training, animals received a challenge with S. pneumoniae and were evaluated either 12 h or 10 days after instillation. In acute phase, Sedentary Infected group had an increase in respiratory system resistance and elastance; number of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BAL); polymorphonuclear cells in lung parenchyma; and levels of keratinocyte-derived chemokine (KC), tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL) - 1 beta (IL-1 beta) in lung homogenates. Exercise training significantly attenuated the increase in all of these parameters and induced an increase in expression of antioxidant enzymes (CuZnSOD and MnSOD) in lungs. Trained Infected mice had a significant decrease in the number of colony-forming units of pneumococci in the lungs compared with Sedentary Infected animals. Ten days after infection, Trained Infected group exhibited lower numbers of macrophages in BAL, polymorphonuclear cells in lung parenchyma and IL-6 in lung homogenates compared with Sedentary Infected group. Our results suggest a protective effect of moderate exercise training against respiratory infection with S. pneumoniae. This effect is most likely secondary to an effect of exercise on oxidant-antioxidant balance.
Palavras-chave
aerobic exercise, S. pneumoniae, bacteria, lung infection
Referências
  1. Anciaes AM, 2011, CLINICS, V66, P1797, DOI 10.1590/S1807-59322011001000020
  2. Antunes G, 2002, EUR RESPIR J, V20, P990, DOI 10.1183/09031936.02.00295102
  3. Bermon S, 2007, EXERC IMMUNOL REV, V13, P6
  4. Boutten A, 1996, AM J RESP CRIT CARE, V153, P336
  5. BRIELAND JK, 1995, AM J RESP CELL MOL, V12, P104
  6. Butler JC, 2004, PNEUMOCCOCUS, P148
  7. Colbert LH, 2004, J AM GERIATR SOC, V52, P1098, DOI 10.1111/j.1532-5415.2004.52307.x
  8. Davis JM, 1997, J APPL PHYSIOL, V83, P1461
  9. Ferreira DM, 2009, MICROB PATHOGENESIS, V47, P157, DOI 10.1016/j.micpath.2009.05.005
  10. Fillion I, 2001, J IMMUNOL, V166, P7353
  11. Gleeson M, 2011, NAT REV IMMUNOL, V11, P607, DOI 10.1038/nri3041
  12. Goncalves CTR, 2012, CRIT CARE, V16, DOI 10.1186/cc11807
  13. Haslett C, 1999, AM J RESP CRIT CARE, V160, pS5
  14. Innqjerdingen KT, 2013, SCAND J IMMUNOL, V77, P372
  15. JOHNSTON RB, 1991, REV INFECT DIS, V13, pS509
  16. Kohut ML, 2009, J INFECT DIS, V200, P1434, DOI 10.1086/606014
  17. Lima FA, 2012, CLIN VACCINE IMMUNOL, V19, P1382, DOI 10.1128/CVI.00171-12
  18. Lowder Thomas, 2005, Brain Behav Immun, V19, P377, DOI 10.1016/j.bbi.2005.04.002
  19. Mandell LA, 2007, CLIN INFECT DIS, V44, pS27, DOI 10.1086/511159
  20. Marriott HM, 2008, AM J RESP CRIT CARE, V177, P887, DOI 10.1164/rccm.200707-990OC
  21. Marriott HM, 2006, J IMMUNOL, V177, P6480
  22. MATALON S, 1990, BIOCHIM BIOPHYS ACTA, V1035, P121, DOI 10.1016/0304-4165(90)90105-6
  23. Matthews CE, 2002, MED SCI SPORT EXER, V34, P1242, DOI 10.1097/00005768-200208000-00003
  24. Mohler J, 2003, INTENS CARE MED, V29, P808, DOI 10.1007/s00134-003-1699-x
  25. Murphy EA, 2008, BRAIN BEHAV IMMUN, V22, P1152, DOI 10.1016/j.bbi.2008.06.004
  26. National Research Council of the National Academy of Sciences, 2011, GUIDE CARE USE LAB A
  27. NELSON S, 1989, J INFECT DIS, V159, P189
  28. NIEMAN DC, 1990, J SPORT MED PHYS FIT, V30, P316
  29. NIEMAN DC, 1994, INT J SPORTS MED, V15, pS131, DOI 10.1055/s-2007-1021128
  30. NIEMAN DC, 1990, INT J SPORTS MED, V11, P467, DOI 10.1055/s-2007-1024839
  31. Olivo CR, 2012, RESP PHYSIOL NEUROBI, V182, P81, DOI 10.1016/j.resp.2012.05.004
  32. PAINE R, 1993, J IMMUNOL, V150, P4561
  33. Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029
  34. Ramos DS, 2010, MED SCI SPORT EXER, V42, P113, DOI 10.1249/MSS.0b013e3181ad1c72
  35. Ricciardolo FLM, 2006, EUR J PHARMACOL, V533, P240, DOI 10.1016/j.cjphar.2005.12.057
  36. Schultz MJ, 2002, ARCH IMMUNOL THER EX, V50, P159
  37. Silva RA, 2010, EUR RESPIR J, V35, P994, DOI 10.1183/09031936.00049509
  38. Smith MW, 2007, COMPARATIVE MED, V57, P82
  39. Standiford TJ, 1996, J LEUKOCYTE BIOL, V59, P24
  40. Stegenga ME, 2009, CRIT CARE MED, V37, P614, DOI 10.1097/CCM.0b013e31819599b6
  41. Stewart KJ, 2004, CARDIOL CLIN, V22, P569, DOI 10.1016/j.ccl.2004.06.007
  42. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  43. van der Poll T, 2009, LANCET, V374, P1543, DOI 10.1016/S0140-6736(09)61114-4
  44. Vieira RD, 2012, MED SCI SPORT EXER, V44, P1227, DOI 10.1249/MSS.0b013e31824b2877
  45. Vieira RP, 2007, AM J RESP CRIT CARE, V176, P871, DOI 10.1164/rccm.200610-1567OC
  46. Vieira RP, 2011, RESP PHYSIOL NEUROBI, V175, P383, DOI 10.1016/j.resp.2011.01.002
  47. WEIBEL ER, 1963, LAB INVEST, V12, P131
  48. Zhang P, 1999, J INFECT DIS, V179, P1441, DOI 10.1086/314763