Expression patterns of peroxiredoxin genes in bronchial epithelial cells exposed to diesel exhaust particles

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Autores
SERIANI, Robson
PAULA, Carla Peres de
CUNHA, Anderson Ferreira da
OLIVEIRA, Marcos Antonio de
KREMPEL, Paloma Gava
Citação
EXPERIMENTAL AND MOLECULAR PATHOLOGY, v.120, article ID 104641, 5p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Several mechanisms have been suggested to explain the adverse effects of air pollutants on airway cells. One such explanation is the presence of high concentrations of oxidants and pro-oxidants in environmental pollutants. All animal and plant cells have developed several mechanisms to prevent damage by oxidative molecules. Among these, the peroxiredoxins (PRDXs) are of interest due to a high reactivity with reactive oxygen species (ROS) through the functioning of the thioredoxin/thioredoxin reductase system. This study aimed to verify the gene expression patterns of the PRDX family in bronchial epithelial airway cells (BEAS-2B) cells exposed to diesel exhaust particles (DEPs) at a concentration of 15 mu g/mL for 1 or 2 h because this it is a major component of particulate matter in the atmosphere. There was a significant decrease in mRNA fold changes of PRDX2 (0.43 +/- 0.34; *p = 0.0220), PRDX5 (0.43 +/- 0.34; *p = 0.0220), and PRDX6 (0.33 +/- 0.25; *p = 0.0069) after 1 h of exposure to DEPs. The reduction in mRNA levels may consequently lead to a decrease in the levels of PRDX proteins, increasing oxidative stress in bronchial epithelial cells BEAS-2B and thus, negatively affecting cellular functions.
Palavras-chave
Peroxiredoxins, Air pollution, Diesel exhaust particles, Oxidative stress, BEAS-2B
Referências
  1. Arevalo JA, 2018, ANTIOXIDANTS-BASEL, V7, DOI 10.3390/antiox7120172
  2. Banmeyer I, 2004, FREE RADICAL BIO MED, V36, P65, DOI 10.1016/j.freeradbiomed.2003.10.019
  3. Barranco-Medina S, 2009, FEBS LETT, V583, P1809, DOI 10.1016/j.febslet.2009.05.029
  4. Cao Z., 2017, PART SUBCELLULAR BIO, V83, P127
  5. Chen JW, 2000, J BIOL CHEM, V275, P28421, DOI 10.1074/jbc.M005073200
  6. D'Anna C, 2017, EXP LUNG RES, V43, P347, DOI 10.1080/01902148.2017.1377784
  7. Federti E, 2017, FREE RADICAL BIO MED, V112, P376, DOI 10.1016/j.freeradbiomed.2017.08.004
  8. Fisher AB, 2001, AM J PHYSIOL-LUNG C, V280, pL748
  9. Fisher AB, 2017, ARCH BIOCHEM BIOPHYS, V617, P68, DOI 10.1016/j.abb.2016.12.003
  10. Fisher AB, 2011, ANTIOXID REDOX SIGN, V15, P831, DOI 10.1089/ars.2010.3412
  11. Floen MJ, 2014, FREE RADICAL BIO MED, V75, P167, DOI 10.1016/j.freeradbiomed.2014.07.023
  12. Gellert M, 2013, J BIOL CHEM, V288, P35117, DOI 10.1074/jbc.M113.521443
  13. Kim HS, 2003, AM J PHYSIOL-LUNG C, V285, pL363, DOI 10.1152/ajplung.00078.2003
  14. Kwon T, 2016, STEM CELLS, V34, P1188, DOI 10.1002/stem.2323
  15. Laks D, 2008, INHAL TOXICOL, V20, P1037, DOI 10.1080/08958370802112922
  16. Lim JC, 2008, J BIOL CHEM, V283, P28873, DOI 10.1074/jbc.M804087200
  17. Manevich Y, 2005, FREE RADICAL BIO MED, V38, P1422, DOI 10.1016/j.freeradbiomed.2005.02.011
  18. Mishra M, 2015, CANCER LETT, V366, P150, DOI 10.1016/j.canlet.2015.07.002
  19. Nguyen-nhu NT, 2007, BBA-GENE STRUCT EXPR, V1769, P472, DOI 10.1016/j.bbaexp.2007.05.004
  20. Ni M, 2007, FEBS LETT, V581, P3641, DOI 10.1016/j.febslet.2007.04.045
  21. Ovrevik J, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20194772
  22. Pace PE, 2018, FREE RADICAL BIO MED, V129, P383, DOI 10.1016/j.freeradbiomed.2018.10.407
  23. Poole Leslie B, 2011, Curr Protoc Toxicol, VChapter 7, DOI 10.1002/0471140856.tx0709s49
  24. Radyuk SN, 2018, ANTIOXID REDOX SIGN, V29, P1293, DOI 10.1089/ars.2017.7452
  25. Radyuk SN, 2009, BIOCHEM J, V419, P437, DOI 10.1042/BJ20082003
  26. Rhee SG, 2017, ANNU REV BIOCHEM, V86, P749, DOI 10.1146/annurev-biochem-060815-014431
  27. Rhee SG, 2011, ANTIOXID REDOX SIGN, V15, P781, DOI 10.1089/ars.2010.3393
  28. Romanello KS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208316
  29. Schraufnagel DE, 2019, CHEST, V155, P417, DOI 10.1016/j.chest.2018.10.041
  30. Seriani R, 2016, ENVIRON SCI POLLUT R, V23, P9862, DOI 10.1007/s11356-016-6228-x
  31. Seriani R, 2015, EXP TOXICOL PATHOL, V67, P323, DOI 10.1016/j.etp.2015.02.004
  32. Seriani R, 2015, J TOXICOL ENV HEAL A, V78, P215, DOI 10.1080/15287394.2014.947456
  33. Serikov VB, 2006, INHAL TOXICOL, V18, P79, DOI 10.1080/08958370500282506
  34. Spann K, 2016, ANN GLOB HEALTH, V82, P28, DOI 10.1016/j.aogh.2016.01.007
  35. Steiner S, 2016, ARCH TOXICOL, V90, P1541, DOI 10.1007/s00204-016-1736-5
  36. Su LJ, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/5080843
  37. Sunil VR, 2017, EXP MOL PATHOL, V102, P50, DOI 10.1016/j.yexmp.2016.12.005
  38. Veal EA, 2018, ANTIOXID REDOX SIGN, V28, P574, DOI 10.1089/ars.2017.7214
  39. Walsh B, 2009, REDOX REP, V14, P275, DOI 10.1179/135100009X12525712409652
  40. Wu F, 2017, CELL DEATH DIS, V8, DOI 10.1038/cddis.2017.301
  41. Yang LW, 2015, EXP MOL PATHOL, V99, P365, DOI 10.1016/j.yexmp.2015.08.005
  42. Yoshizaki K, 2010, INHAL TOXICOL, V22, P610, DOI 10.3109/08958371003621633
  43. Yuan J, 2004, BBA-MOL CELL RES, V1693, P37, DOI 10.1016/j.bbamcr.2004.04.006
  44. Zheng XM, 2019, TOXICOL APPL PHARM, V366, P25, DOI 10.1016/j.taap.2019.01.010
  45. Zhou SL, 2016, ONCOL LETT, V12, P2217, DOI 10.3892/ol.2016.4899