Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome

Carregando...
Imagem de Miniatura
Citações na Scopus
106
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOSCIENTIFICA LTD
Autores
SIMOES, Renata
FEITOSA, Weber Beringui
SIQUEIRA, Adriano Felipe Perez
NICHI, Marcilio
PAULA-LOPES, Fabiola Freitas
MARQUES, Mariana Groke
BARNABE, Valquiria Hyppolito
VISINTIN, Jose Antonio
ASSUMPCAO, Mayra Elena Ortiz
Citação
REPRODUCTION, v.146, n.5, p.433-441, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Sperm chromatin fragmentation may be caused by a number of factors, the most significant of which is reactive oxygen species. However, little is known about the effect of sperm oxidative stress (OS) on DNA integrity, fertilization, and embryonic development in cattle. Therefore, the goal of this study was to evaluate the influence of sperm OS susceptibility on the DNA fragmentation rate and in vitro embryo production (IVP) in a population of bulls. Groups of cryopreserved sperm samples were divided into four groups, based on their susceptibility to OS (G1, low OS; G2, average OS; G3, high OS; and G4, highest OS). Our results demonstrated that the sperm DNA integrity was compromised in response to increased OS susceptibility. Furthermore, semen samples with lower susceptibility to OS were also less susceptible to DNA damage (G1, 4.06%; G2, 6.09%; G3, 6.19%; and G4, 6.20%). In addition, embryo IVP provided evidence that the embryo cleavage rate decreased as the OS increased (G1, 70.18%; G2, 62.24%; G3, 55.85%; and G4, 50.93%), but no significant difference in the blastocyst rate or the number of blastomeres was observed among the groups. The groups with greater sensitivity to OS were also associated with a greater percentage of apoptotic cells (G1, 2.6%; G2, 2.76%; G3, 5.59%; and G4, 4.49%). In conclusion, we demonstrated that an increased susceptibility to OS compromises sperm DNA integrity and consequently reduces embryo quality.
Palavras-chave
Referências
  1. Acharyya Silpi, 2005, Indian Journal of Experimental Biology, V43, P1016
  2. Agarwal A, 2004, Minerva Ginecol, V56, P235
  3. Agarwal A, 2008, AM J REPROD IMMUNOL, V59, P2, DOI 10.1111/j.1600-0897.2007.00559.x
  4. Agarwal A, 2012, REPROD BIOL ENDOCRIN, V10, DOI 10.1186/1477-7827-10-49
  5. Agarwal Ashok, 2011, J Indian Med Assoc, V109, P184
  6. Aitken RJ, 2001, REPRODUCTION, V122, P497, DOI 10.1530/rep.0.1220497
  7. Aitken RJ, 2006, INT J ANDROL, V29, P69, DOI 10.1111/j.1365-2605.2005.00630.x
  8. Aitken R John, 2007, Soc Reprod Fertil Suppl, V65, P81
  9. Alomar M, 2008, ANIM REPROD SCI, V107, P48, DOI 10.1016/j.anireprosci.2007.06.009
  10. Amirat L, 2005, REPRODUCTION, V129, P535, DOI 10.1053/rep.1.00011
  11. BANSAL AK, 2011, VET MED INT, DOI 10.4061/2011/686137
  12. Boe-Hansen GB, 2005, THERIOGENOLOGY, V63, P1789, DOI 10.1016/j,theriogenology.2004.08.004
  13. Brad AM, 2007, REPRODUCTION, V134, P789, DOI 10.1530/REP-07-0146
  14. Buege J A, 1978, Methods Enzymol, V52, P302
  15. Bungum M, 2011, ASIAN J ANDROL, V13, P69, DOI 10.1038/aja.2010.73
  16. deLamirande E, 1997, MOL HUM REPROD, V3, P175, DOI 10.1093/molehr/3.3.175
  17. Desai N, 2009, FERTIL STERIL, V92, P1626, DOI 10.1016/j.fertnstert.2008.08.109
  18. Desai NR, 2010, FERTIL STERIL, V94, P1541, DOI 10.1016/j.fertnstert.2009.12.041
  19. Donnelly ET, 2000, HUM REPROD, V15, P1552, DOI 10.1093/humrep/15.7.1552
  20. EID LN, 1994, BIOL REPROD, V51, P1232, DOI 10.1095/biolreprod51.6.1232
  21. Enciso M, 2006, THERIOGENOLOGY, V65, P308, DOI 10.1016/j.theriogenology.2005.05.044
  22. Esterhuizen AD, 2000, HUM REPROD, V15, P657, DOI 10.1093/humrep/15.3.657
  23. Evenson DP, 1999, HUM REPROD, V14, P1039, DOI 10.1093/humrep/14.4.1039
  24. Fabian D, 2005, THERIOGENOLOGY, V64, P221, DOI 10.1016/j.theriogenology.2004.11.022
  25. Fatehi AN, 2006, J ANDROL, V27, P176, DOI 10.2164/jandrol.04152
  26. Fernandez JL, 2003, J ANDROL, V24, P59
  27. HALLIWELL B, 1991, AM J MED, V91, pS14, DOI 10.1016/0002-9343(91)90279-7
  28. Hazout A, 2008, GYNECOL OBSTET FERTI, V36, P1109, DOI 10.1016/j.gyobfe.2008.07.017
  29. Liu DY, 2002, ASIAN J ANDROL, V4, P281
  30. Lloyd DR, 1999, MUTAT RES-FUND MOL M, V424, P23, DOI 10.1016/S0027-5107(99)00005-6
  31. Mahfouz RZ, 2010, FERTIL STERIL, V93, P814, DOI 10.1016/j.fertnstert.2008.10.068
  32. Makker K, 2009, INDIAN J MED RES, V129, P357
  33. Marti E, 2008, J ANDROL, V29, P459, DOI 10.2164/jandrol.107.003459
  34. Miller David, 2013, Methods Mol Biol, V927, P459
  35. Nichi M, 2007, THERIOGENOLOGY, V67, P334, DOI 10.1016/j.theriogenology.2006.08.002
  36. Palma GA, 2004, ANAT HISTOL EMBRYOL, V33, P257, DOI 10.1111/j.1439-0264.2004.00543.x
  37. Paula-Lopes FF, 2002, BIOCHEM BIOPH RES CO, V295, P37, DOI 10.1016/S0006-291X(02)00619-8
  38. Ruder EH, 2009, CURR OPIN OBSTET GYN, V21, P219, DOI 10.1097/GCO.0b013e32832924ba
  39. Sakkas D, 2010, FERTIL STERIL, V93, P1027, DOI 10.1016/j.fertnstert.2009.10.046
  40. Sanocka Dorota, 2004, Reprod Biol Endocrinol, V2, P12, DOI 10.1186/1477-7827-2-12
  41. SAS, 2007, STAT AN SYST WIND V8, P1999
  42. Shaman JA, 2006, SPERM CELL PRODUCTIO, P31, DOI 10.1017/CBO9780511545115.003
  43. Shamsi MB, 2011, J ASSIST REPROD GEN, V28, P1073, DOI 10.1007/s10815-011-9631-8
  44. Sikka Suresh C., 1996, Frontiers in Bioscience (online), V1, pE78
  45. TERVIT HR, 1972, J REPROD FERTIL, V30, P493
  46. Tesarik J, 2002, HUM REPROD, V17, P184, DOI 10.1093/humrep/17.1.184
  47. Tesarik J, 2004, HUM REPROD, V19, P611, DOI 10.1093/humrep/deh127
  48. Virro MR, 2004, FERTIL STERIL, V81, P1289, DOI 10.1016/j.fertnstert.2003.09.063
  49. Voitkun V, 1999, MUTAT RES-FUND MOL M, V424, P97, DOI 10.1016/S0027-5107(99)00011-1
  50. Wyrobek AJ, 2006, P NATL ACAD SCI USA, V103, P9601, DOI 10.1073/pnas.0506468103
  51. Yamada C, 2007, REPROD DOMEST ANIM, V46, P173, DOI [10.1111/j.1439-0531.2009.01554.x, DOI 10.1111/J.1439-0531.2009.01554.X)]
  52. Zribi N, 2011, REPROD BIOL ENDOCRIN, V9, DOI 10.1186/1477-7827-9-47