Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation

Nenhuma Miniatura disponível
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER CHEMICAL SOC
Autores
I, Marcia Bittencourt-Mernak
SILVA, Rafael C. da
PONCI, Vitor
PINHEIRO, Aruana J. M. C. R.
LIMA NETO, Lidio G.
SANTANA, Fernanda P. R.
Citação
JOURNAL OF NATURAL PRODUCTS, v.84, n.8, p.2282-2294, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1 beta and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 beta levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
Palavras-chave
Referências
  1. Arndt PG, 2005, AM J RESP CRIT CARE, V171, P978, DOI 10.1164/rccm.200406-712OC
  2. Bae HB, 2010, INFLAMMATION, V33, P82, DOI 10.1007/s10753-009-9161-z
  3. Barboza JN, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/3957262
  4. Bellani G, 2016, JAMA-J AM MED ASSOC, V315, P788, DOI 10.1001/jama.2016.0291
  5. Bosca L, 2005, TOXICOLOGY, V208, P249, DOI 10.1016/j.tox.2004.11.035
  6. Chen CY, 2010, J AGR FOOD CHEM, V58, P11653, DOI 10.1021/jf1031668
  7. Chen XJ, 2012, INT IMMUNOPHARMACOL, V14, P209, DOI 10.1016/j.intimp.2012.07.007
  8. Chu X, 2012, J AGR FOOD CHEM, V60, P3947, DOI 10.1021/jf2051587
  9. Copenhaver AM, 2015, P NATL ACAD SCI USA, V112, P7557, DOI 10.1073/pnas.1501289112
  10. da Costa-Silva TA, 2015, J NAT PROD, V78, P653, DOI 10.1021/np500809a
  11. de Sousa FS, 2019, TOXICOL IN VITRO, V55, P116, DOI 10.1016/j.tiv.2018.12.011
  12. de Sousa FS, 2017, PHYTOCHEMISTRY, V140, P108, DOI 10.1016/j.phytochem.2017.04.024
  13. Dolhnikoff M., 2011, CRIT CARE, V15, pR4, DOI 10.1186/cc9401
  14. Donahoe Michael, 2011, Pulm Circ, V1, P192, DOI 10.4103/2045-8932.83454
  15. Dourado J. S., 2018, J IMMUNOL RES
  16. Ferguson ND, 2012, INTENS CARE MED, V38, P1573, DOI 10.1007/s00134-012-2682-1
  17. Fligiel SEG, 2006, HUM PATHOL, V37, P422, DOI 10.1016/j.humpath.2005.11.023
  18. Grecco SS, 2017, CHEM-BIOL INTERACT, V277, P55, DOI 10.1016/j.cbi.2017.08.017
  19. Han SH, 2015, J IMMUNOL, V194, P855, DOI 10.4049/jimmunol.1402513
  20. HANTOS Z, 1992, J APPL PHYSIOL, V72, P168, DOI 10.1152/jappl.1992.72.1.168
  21. Hecker L, 2018, AM J PHYSIOL-LUNG C, V314, P1642, DOI 10.1152/ajplung.00275.2017
  22. Hsu HT, 2015, INFLAMMATION, V38, P415, DOI 10.1007/s10753-014-0046-4
  23. Huang XF, 2015, INT IMMUNOPHARMACOL, V26, P265, DOI 10.1016/j.intimp.2015.03.026
  24. Inagawa R, 2018, CHEST, V154, P317, DOI 10.1016/j.chest.2018.03.003
  25. Bittencourt-Mernak MI, 2017, AM J PHYSIOL-LUNG C, V312, pL217, DOI 10.1152/ajplung.00444.2015
  26. Kong GQ, 2016, INT IMMUNOPHARMACOL, V36, P51, DOI 10.1016/j.intimp.2016.03.039
  27. Kubo H, 1998, BLOOD, V92, P283, DOI 10.1182/blood.V92.1.283.413a04_283_290
  28. Lee JP, 2010, ACTA PHARMACOL SIN, V31, P831, DOI 10.1038/aps.2010.62
  29. Lei JJ, 2018, EUR J PHARMACOL, V818, P110, DOI 10.1016/j.ejphar.2017.10.029
  30. Li CP, 2016, BIOCHEM BIOPH RES CO, V474, P572, DOI 10.1016/j.bbrc.2016.04.104
  31. Li FJ, 2018, THORAC CANCER, V9, P25, DOI 10.1111/1759-7714.12508
  32. Li YC, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/383608
  33. Liu XY, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00102
  34. Liverani E, 2014, J LEUKOCYTE BIOL, V95, P313, DOI 10.1189/jlb.1012518
  35. Magalhaes CB, 2019, RESP PHYSIOL NEUROBI, V259, P30, DOI 10.1016/j.resp.2018.07.001
  36. Magalhaes CB, 2010, J APPL PHYSIOL, V108, P845, DOI 10.1152/japplphysiol.00560.2009
  37. Matthay MA, 2005, AM J RESP CELL MOL, V33, P319, DOI 10.1165/rcmb.F305
  38. Matuschak G. M., 2010, J MO MED, V107, P252
  39. Me YC, 2009, INT IMMUNOPHARMACOL, V9, P194, DOI 10.1016/j.intimp.2008.11.004
  40. Mehrabi MR, 2001, CARDIOVASC PATHOL, V10, P241, DOI 10.1016/S1054-8807(01)00084-9
  41. Menezes SLS, 2005, J APPL PHYSIOL, V98, P1777, DOI 10.1152/japplphysiol.01182.2004
  42. Meyer NJ, 2017, JCI INSIGHT, V2, DOI 10.1172/jci.insight.96432
  43. Montuschi P, 1999, EUR J PHARMACOL, V365, P59, DOI 10.1016/S0014-2999(98)00859-0
  44. Morales-Nebreda L, 2015, EUR RESPIR REV, V24, P505, DOI 10.1183/16000617.0031-2015
  45. Murakami Y, 2005, ARCH BIOCHEM BIOPHYS, V434, P326, DOI 10.1016/j.abb.2004.11.013
  46. Ogata M, 2000, CHEM PHARM BULL, V48, P1467
  47. Ogata M, 2008, YAKUGAKU ZASSHI, V128, P1149, DOI 10.1248/yakushi.128.1149
  48. Pan CL, 2015, INFLAMMATION, V38, P1385, DOI 10.1007/s10753-015-0110-8
  49. Rahman I, 2002, BIOCHEM PHARMACOL, V64, P935, DOI 10.1016/S0006-2952(02)01153-X
  50. Ricciardolo FLM, 2004, PHYSIOL REV, V84, P731, DOI 10.1152/physrev.00034.2003
  51. RighettI RF, 2014, RESP PHYSIOL NEUROBI, V192, P134, DOI 10.1016/j.resp.2013.12.012
  52. Rocco PRM, 2001, AM J RESP CRIT CARE, V164, P1067, DOI 10.1164/ajrccm.164.6.2007062
  53. Santana FPR, 2020, BIOCHEM PHARMACOL, V180, DOI 10.1016/j.bcp.2020.114175
  54. Santana FPR, 2019, MEDIAT INFLAMM, V2019, DOI 10.1155/2019/1356356
  55. Santos FB, 2006, J APPL PHYSIOL, V100, P98, DOI 10.1152/japplphysiol.00395.2005
  56. Sica A, 2015, CELL MOL LIFE SCI, V72, P4111, DOI 10.1007/s00018-015-1995-y
  57. Sinha P, 2020, JAMA INTERN MED, V180, P1152, DOI 10.1001/jamainternmed.2020.3313
  58. Toledo AC, 2013, BRIT J PHARMACOL, V168, P1736, DOI 10.1111/bph.12062
  59. Villar J, 2011, INTENS CARE MED, V37, P1932, DOI 10.1007/s00134-011-2380-4
  60. Xie CF, 2019, BIOORGAN MED CHEM, V27, P516, DOI 10.1016/j.bmc.2018.12.033
  61. Yang Y., 2013, TISSUE BARRIERS, V1, DOI 10.4161/tisb.23494
  62. Yarla NS, 2016, SEMIN CANCER BIOL, V40-41, P48, DOI 10.1016/j.semcancer.2016.02.001
  63. Yeh JL, 2011, INT J IMMUNOPATH PH, V24, P345, DOI 10.1177/039463201102400208
  64. Zhang H., 2018, CELL PHYSIOL BIOCHEM, V49, P1918, DOI 10.1159/000493653
  65. Zhao EP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109750
  66. Zin WA, 2012, J APPL PHYSIOL, V112, P911, DOI 10.1152/japplphysiol.00764.2011